• Previous Article
    Efficient high-order implicit solvers for the dynamic of thin-walled beams with open cross section under external arbitrary loadings
  • DCDS-S Home
  • This Issue
  • Next Article
    POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds
doi: 10.3934/dcdss.2019114

Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media

1. 

LMGC, Univ Montpellier, CNRS, Montpellier, France

2. 

Dept. Maths, Mahidol University, Bangkok, Thailand

* Corresponding author: Christian Licht

Received  December 2017 Revised  March 2018 Published  November 2018

We derive several models in Physics of continuous media using Trotter theory of convergence of semi-groups of operators acting on variable spaces.

Citation: Christian Licht, Thibaut Weller. Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019114
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

J. T. Beale, Eigenfunction expansions for objects floating in an open sea, Communications on Pure and Applied Mathematics, 30 (1977), 283-313. doi: 10.1002/cpa.3160300303.

[3]

D. Blanchard and G. A. Francfort, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45 (1987), 645-667. doi: 10.1090/qam/917015.

[4]

A. Bobrowski and M. Kimmel, An operator semigroup in mathematical genetics, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, 2015. doi: 10.1007/978-3-642-35958-3.

[5]

A. Bobrowski, Convergence of one-parameter operator semi-groups in models of mathematical biology and elsewhere, New Mathematical Monographs, 30, Cambridge University Press, 2016. doi: 10.1017/CBO9781316480663.

[6]

E. Bonetti, G. Bonfanti, C. Licht and R. Rossi, Dynamics of two linearly elastic bodies connected by a heavy thin soft viscoelastic layer, work in progress.

[7]

S. Brahim-OtsmaneG. A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., 71 (1992), 197-231.

[8]

H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Math. Studies, no. 5, North-Holland, Amsterdam, 1973.

[9]

P. G. Ciarlet, Mathematical elasticity, vol. II: theory of plates, North-Holland, Elsevier, 1997.

[10]

G. A. Francfort and P. Suquet, Homogenization and mechanical dissipation in thermo-viscoelasticity, Archive Rat. Mech. Anal., 96 (1986), 265-293. doi: 10.1007/BF00251909.

[11]

R. M. Garipov, On the linear theory of gravity waves, Archive Rat. Mech. Anal., 24 (1967), 352-362. doi: 10.1007/BF00253152.

[12]

P. GermainQ. S. Nguyen and P. Suquet, Continuum thermodynamics, J. Appl. Mech., 50 (1983), 1010-1020.

[13]

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, Journal de Mécanique, 14 (1975), 39-63.

[14]

O. IosifescuC. Licht and G. Michaille, Nonlinear boundary conditions in Kirchhoff-Love plate theory, J Elast, 96 (2009), 57-79. doi: 10.1007/s10659-009-9198-0.

[15]

T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups, Proc. Japan Acad., 35 (1959), 467-468. doi: 10.3792/pja/1195524254.

[16]

C. Licht, Etude théorique et numérique de l'évolution d'un système fluide-flotteur, Thèse de docteur ingénieur, Nantes, 1980.

[17]

C. Licht, Etude de quelques modèles décrivant les vibrations d'une structure élastique dans la mer, Rapport de recherche de l'Ecole Nationale Supérieure des Techniques Avancées ENSTA no163, 1982.

[18]

C. Licht, Evolution d'un système fluide-flotteur, Journal de Mécanique Théorique et Appliquée, 1 (1982), 211-235.

[19]

C. Licht, Trois modèles décrivant les vibrations d'une structure dans la mer, C. R. Acad. Sci. Paris, Ser. I, 296 (1983), 341-344.

[20]

C. Licht, Comportement asymptotique d'une bande dissipative mince de faible rigidité, C. R. Acad. Sci. Paris, Ser. I, 317 (1993), 429-433.

[21]

C. Licht, Asymptotic behaviour of a thin dissipative layer, 2nd International Conference on Nonlinear Mechanics, Beijing, China, August 23-26, (1993), Ed. W.Z. Chien, Beijing University Press, 170-173.

[22]

C. Licht, Thin linearly viscoelastic Kelvin-Voigt plates, C. R. Mecanique, 341 (2013), 697-700.

[23]

C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer, Cinquièmes journées du GDR 'Étude de la propagation sonore en vue du contrôle non-destructif', Anglet, France, June 2-6, (2008), published in Ultrasonic wave propagation in non homogeneous media, Springer Proceedings in Physics 128, A. Léger and M. Deschamps Editors, Springer Verlag, 99-110.

[24]

C. LichtA. LégerS. Orankitjaroen and A. Ould Khaoua, Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl., 99 (2013), 685-703. doi: 10.1016/j.matpur.2012.10.005.

[25]

C. LichtS. OrankitjaroenA. Ould Khaoua and T. Weller, Transient response of elastic bodies connected by a thin stiff viscoelastic layer with evanescent mass, C. R. Mecanique, 344 (2016), 736-743.

[26]

J. L. Lions, Réduction à des problèmes du type Cauchy-Kowaleska, Cours C.I.M.E., Cremonese, (1968), 269-280.

[27]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Gauthiers-Villars, Paris, 1968.

[28]

A. Raoult, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Annali di Matematica Pura ed Applicata, 139 (1985), 361-400. doi: 10.1007/BF01766863.

[29]

H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math., 8 (1958), 887-919. doi: 10.2140/pjm.1958.8.887.

[30]

T. Weller, Etude des symétries et modèles de plaques en piézoélectricité linéarisée, Thèse, Montpellier, 2004.

[31]

T. Weller and C. Licht, Analyse asymptotique de plaques minces linéairement piézoélectriques, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 309-314. doi: 10.1016/S1631-073X(02)02457-3.

[32]

T. Weller and C. Licht, Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., 1 (2010), 173-188.

[33]

V. V. Zhikov and S. E. Pastukhova, On the Trotter-Kato theorem in a variable space, Funct. Anal. Appl., 41 (2007), 264-270. doi: 10.1007/s10688-007-0024-9.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

J. T. Beale, Eigenfunction expansions for objects floating in an open sea, Communications on Pure and Applied Mathematics, 30 (1977), 283-313. doi: 10.1002/cpa.3160300303.

[3]

D. Blanchard and G. A. Francfort, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45 (1987), 645-667. doi: 10.1090/qam/917015.

[4]

A. Bobrowski and M. Kimmel, An operator semigroup in mathematical genetics, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, 2015. doi: 10.1007/978-3-642-35958-3.

[5]

A. Bobrowski, Convergence of one-parameter operator semi-groups in models of mathematical biology and elsewhere, New Mathematical Monographs, 30, Cambridge University Press, 2016. doi: 10.1017/CBO9781316480663.

[6]

E. Bonetti, G. Bonfanti, C. Licht and R. Rossi, Dynamics of two linearly elastic bodies connected by a heavy thin soft viscoelastic layer, work in progress.

[7]

S. Brahim-OtsmaneG. A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., 71 (1992), 197-231.

[8]

H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Math. Studies, no. 5, North-Holland, Amsterdam, 1973.

[9]

P. G. Ciarlet, Mathematical elasticity, vol. II: theory of plates, North-Holland, Elsevier, 1997.

[10]

G. A. Francfort and P. Suquet, Homogenization and mechanical dissipation in thermo-viscoelasticity, Archive Rat. Mech. Anal., 96 (1986), 265-293. doi: 10.1007/BF00251909.

[11]

R. M. Garipov, On the linear theory of gravity waves, Archive Rat. Mech. Anal., 24 (1967), 352-362. doi: 10.1007/BF00253152.

[12]

P. GermainQ. S. Nguyen and P. Suquet, Continuum thermodynamics, J. Appl. Mech., 50 (1983), 1010-1020.

[13]

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, Journal de Mécanique, 14 (1975), 39-63.

[14]

O. IosifescuC. Licht and G. Michaille, Nonlinear boundary conditions in Kirchhoff-Love plate theory, J Elast, 96 (2009), 57-79. doi: 10.1007/s10659-009-9198-0.

[15]

T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups, Proc. Japan Acad., 35 (1959), 467-468. doi: 10.3792/pja/1195524254.

[16]

C. Licht, Etude théorique et numérique de l'évolution d'un système fluide-flotteur, Thèse de docteur ingénieur, Nantes, 1980.

[17]

C. Licht, Etude de quelques modèles décrivant les vibrations d'une structure élastique dans la mer, Rapport de recherche de l'Ecole Nationale Supérieure des Techniques Avancées ENSTA no163, 1982.

[18]

C. Licht, Evolution d'un système fluide-flotteur, Journal de Mécanique Théorique et Appliquée, 1 (1982), 211-235.

[19]

C. Licht, Trois modèles décrivant les vibrations d'une structure dans la mer, C. R. Acad. Sci. Paris, Ser. I, 296 (1983), 341-344.

[20]

C. Licht, Comportement asymptotique d'une bande dissipative mince de faible rigidité, C. R. Acad. Sci. Paris, Ser. I, 317 (1993), 429-433.

[21]

C. Licht, Asymptotic behaviour of a thin dissipative layer, 2nd International Conference on Nonlinear Mechanics, Beijing, China, August 23-26, (1993), Ed. W.Z. Chien, Beijing University Press, 170-173.

[22]

C. Licht, Thin linearly viscoelastic Kelvin-Voigt plates, C. R. Mecanique, 341 (2013), 697-700.

[23]

C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer, Cinquièmes journées du GDR 'Étude de la propagation sonore en vue du contrôle non-destructif', Anglet, France, June 2-6, (2008), published in Ultrasonic wave propagation in non homogeneous media, Springer Proceedings in Physics 128, A. Léger and M. Deschamps Editors, Springer Verlag, 99-110.

[24]

C. LichtA. LégerS. Orankitjaroen and A. Ould Khaoua, Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl., 99 (2013), 685-703. doi: 10.1016/j.matpur.2012.10.005.

[25]

C. LichtS. OrankitjaroenA. Ould Khaoua and T. Weller, Transient response of elastic bodies connected by a thin stiff viscoelastic layer with evanescent mass, C. R. Mecanique, 344 (2016), 736-743.

[26]

J. L. Lions, Réduction à des problèmes du type Cauchy-Kowaleska, Cours C.I.M.E., Cremonese, (1968), 269-280.

[27]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Gauthiers-Villars, Paris, 1968.

[28]

A. Raoult, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Annali di Matematica Pura ed Applicata, 139 (1985), 361-400. doi: 10.1007/BF01766863.

[29]

H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math., 8 (1958), 887-919. doi: 10.2140/pjm.1958.8.887.

[30]

T. Weller, Etude des symétries et modèles de plaques en piézoélectricité linéarisée, Thèse, Montpellier, 2004.

[31]

T. Weller and C. Licht, Analyse asymptotique de plaques minces linéairement piézoélectriques, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 309-314. doi: 10.1016/S1631-073X(02)02457-3.

[32]

T. Weller and C. Licht, Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., 1 (2010), 173-188.

[33]

V. V. Zhikov and S. E. Pastukhova, On the Trotter-Kato theorem in a variable space, Funct. Anal. Appl., 41 (2007), 264-270. doi: 10.1007/s10688-007-0024-9.

[1]

Simone Creo, Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Communications on Pure & Applied Analysis, 2018, 17 (2) : 647-669. doi: 10.3934/cpaa.2018035

[2]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[3]

Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic & Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317

[4]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks & Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[5]

L. Yu. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electronic Research Announcements, 2004, 10: 21-28.

[6]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[7]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[8]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[9]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[10]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[11]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[12]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[13]

Irene Benedetti, Nguyen Van Loi, Valentina Taddei. An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2977-2998. doi: 10.3934/dcds.2017128

[14]

Virginia Agostiniani. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1125-1167. doi: 10.3934/dcds.2012.32.1125

[15]

Aviv Gibali, Dang Thi Mai, Nguyen The Vinh. A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-22. doi: 10.3934/jimo.2018080

[16]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[17]

Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163

[18]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[19]

Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075

[20]

Pilar Bayer, Dionís Remón. A reduction point algorithm for cocompact Fuchsian groups and applications. Advances in Mathematics of Communications, 2014, 8 (2) : 223-239. doi: 10.3934/amc.2014.8.223

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]