doi: 10.3934/dcdss.2019109

Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems

1. 

Université de La Rochelle, Laboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Xiamen University, School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling, and High Performance Scientific Computing, Xiamen, Fujian, China

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

* Corresponding author: Shuiran Peng

The work of this author is partialy supported by NSF of China (Grant numbers 11471274, 11421110001, 51661135011, and 91630204)

Received  November 2017 Revised  January 2018 Published  November 2018

Our aim in this paper is to study discretized parabolic problems modeling electrostatic micro-electromechanical systems (MEMS). In particular, we prove, both for semi-implicit and implicit semi-discrete schemes, that, under proper assumptions, the solutions are monotonically and pointwise convergent to the minimal solution to the corresponding elliptic partial differential equation. We also study the fully discretized semi-implicit scheme in one space dimension. We finally give numerical simulations which illustrate the behavior of the solutions both in one and two space dimensions.

Citation: Laurence Cherfils, Alain Miranville, Shuiran Peng, Chuanju Xu. Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019109
References:
[1]

E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1-64.

[2]

E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer Series in Computational Mathematics, 13. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-61257-2.

[3]

J. Baranger and M. Duc-Jacquet, Matrices tridiagonales symétriques et matrices factorisables, Revue Française d'Informatique et de Recherche 0pérationnelle. Série Rouge, 5 (1971), 61-66.

[4]

A. Ben-Israel, A Newton-Raphson method for the solution of systems of equations, Journal of Mathematical Analysis and Applications, 15 (1966), 243-252. doi: 10.1016/0022-247X(66)90115-6.

[5]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer Science & Business Media, 2003.

[6]

J. Bryzek, S. Roundy and B. Bircumshaw, et al, Marvelous MEMS, IEEE Circuits and Devices Magazine, 22 (2006), 8–28.

[7]

T. Cazenave, An Introduction to Semilinear Elliptic Equations, Editora do Instituto de Matem tica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

[8]

C. Cowan, P. Esposito and N. Ghoussoub, et al, The critical dimension for a fourth order elliptic problem with singular nonlinearity, Archive for Rational Mechanics and Analysis, 198 (2010), 763–787. doi: 10.1007/s00205-010-0367-x.

[9]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, American Mathematical Society, 2010. doi: 10.1090/cln/020.

[10]

R. P. Feynman, There's plenty of room at the bottom, Engineering and Science, 23 (1960), 22-36.

[11]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Mathematical Analysis, 38 (2007), 1423-1449. doi: 10.1137/050647803.

[12]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA: Nonlinear Differential Equations and Applications, 15 (2008), 115-145. doi: 10.1007/s00030-007-6004-1.

[13]

G. H. Golub and C. F. Van Loan, Matrix Computations, JHU Press, 4$^{nd}$ edition, 2013.

[14]

S. B. Gueye, The exact formulation of the inverse of the tridiagonal matrix for solving the 1D Poisson equation with the finite difference method, Journal of Electromagnetic Analysis and Applications, 6 (2014), 303-308.

[15]

J. S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, Journal of Mathematical Analysis and Applications, 151 (1990), 58-79. doi: 10.1016/0022-247X(90)90243-9.

[16]

J. S. Guo, On the quenching rate estimate, Quarterly of Applied Mathematics, 49 (1991), 747-752. doi: 10.1090/qam/1134750.

[17]

Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, Journal of Differential Equations, 244 (2008), 2277-2309. doi: 10.1016/j.jde.2008.02.005.

[18]

Y. Guo, Global solutions of singular parabolic equations arising from electrostatic MEMS, Journal of Differential Equations, 245 (2008), 809-844. doi: 10.1016/j.jde.2008.03.012.

[19]

Y. GuoZ. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309-338. doi: 10.1137/040613391.

[20]

T. Horiuchi and P. Kumlin, On the minimal solution for quasilinear degenerate elliptic equation and its blow-up, Journal of Mathematics of Kyoto University, 44 (2004), 381-439. doi: 10.1215/kjm/1250283558.

[21]

H. A. Levine, Advances in quenching, Nonlinear Diffusion Equations and Their Equilibrium States, Birkhäuser Boston, 7 (1992), 319-346.

[22]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.

[23]

X. LuoD. Ye and F. Zhou, Regularity of the extremal solution for some elliptic problems with singular nonlinearity and advection, Journal of Differential Equations, 251 (2011), 2082-2099. doi: 10.1016/j.jde.2011.07.011.

[24]

H. C. Nathanson and R. A. Wickstrom, A Resonant gate silicone surface transistor with high Q band pass properties, Applied Physics Letters, 7 (1965), 84-86.

[25]

H. C. Nathanson, W. E. Newell and R. A. Wickstrom, et al, The resonant gate transistor, IEEE Transactions on Electron Devices, 14 (1967), 117–133.

[26]

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000. doi: 10.1137/1.9780898719468.

[27]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.

[28]

J. I. SiddiqueR. Deaton and E. Sabo, An experimental investigation of the theory of electrostatic deflections, Journal of Electrostatics, 69 (2011), 1-6.

[29]

D. Ye and F. Zhou, A generalized two dimensional Emden-Fowler equation with exponential nonlinearity, Calculus of Variations and Partial Differential Equations, 13 (2001), 141-158. doi: 10.1007/PL00009926.

show all references

References:
[1]

E. L. Allgower and K. Georg, Continuation and path following, Acta Numerica, 2 (1993), 1-64.

[2]

E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer Series in Computational Mathematics, 13. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-61257-2.

[3]

J. Baranger and M. Duc-Jacquet, Matrices tridiagonales symétriques et matrices factorisables, Revue Française d'Informatique et de Recherche 0pérationnelle. Série Rouge, 5 (1971), 61-66.

[4]

A. Ben-Israel, A Newton-Raphson method for the solution of systems of equations, Journal of Mathematical Analysis and Applications, 15 (1966), 243-252. doi: 10.1016/0022-247X(66)90115-6.

[5]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer Science & Business Media, 2003.

[6]

J. Bryzek, S. Roundy and B. Bircumshaw, et al, Marvelous MEMS, IEEE Circuits and Devices Magazine, 22 (2006), 8–28.

[7]

T. Cazenave, An Introduction to Semilinear Elliptic Equations, Editora do Instituto de Matem tica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

[8]

C. Cowan, P. Esposito and N. Ghoussoub, et al, The critical dimension for a fourth order elliptic problem with singular nonlinearity, Archive for Rational Mechanics and Analysis, 198 (2010), 763–787. doi: 10.1007/s00205-010-0367-x.

[9]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, American Mathematical Society, 2010. doi: 10.1090/cln/020.

[10]

R. P. Feynman, There's plenty of room at the bottom, Engineering and Science, 23 (1960), 22-36.

[11]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM Journal on Mathematical Analysis, 38 (2007), 1423-1449. doi: 10.1137/050647803.

[12]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅱ: Dynamic case, NoDEA: Nonlinear Differential Equations and Applications, 15 (2008), 115-145. doi: 10.1007/s00030-007-6004-1.

[13]

G. H. Golub and C. F. Van Loan, Matrix Computations, JHU Press, 4$^{nd}$ edition, 2013.

[14]

S. B. Gueye, The exact formulation of the inverse of the tridiagonal matrix for solving the 1D Poisson equation with the finite difference method, Journal of Electromagnetic Analysis and Applications, 6 (2014), 303-308.

[15]

J. S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, Journal of Mathematical Analysis and Applications, 151 (1990), 58-79. doi: 10.1016/0022-247X(90)90243-9.

[16]

J. S. Guo, On the quenching rate estimate, Quarterly of Applied Mathematics, 49 (1991), 747-752. doi: 10.1090/qam/1134750.

[17]

Y. Guo, On the partial differential equations of electrostatic MEMS devices Ⅲ: Refined touchdown behavior, Journal of Differential Equations, 244 (2008), 2277-2309. doi: 10.1016/j.jde.2008.02.005.

[18]

Y. Guo, Global solutions of singular parabolic equations arising from electrostatic MEMS, Journal of Differential Equations, 245 (2008), 809-844. doi: 10.1016/j.jde.2008.03.012.

[19]

Y. GuoZ. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM Journal on Applied Mathematics, 66 (2005), 309-338. doi: 10.1137/040613391.

[20]

T. Horiuchi and P. Kumlin, On the minimal solution for quasilinear degenerate elliptic equation and its blow-up, Journal of Mathematics of Kyoto University, 44 (2004), 381-439. doi: 10.1215/kjm/1250283558.

[21]

H. A. Levine, Advances in quenching, Nonlinear Diffusion Equations and Their Equilibrium States, Birkhäuser Boston, 7 (1992), 319-346.

[22]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.

[23]

X. LuoD. Ye and F. Zhou, Regularity of the extremal solution for some elliptic problems with singular nonlinearity and advection, Journal of Differential Equations, 251 (2011), 2082-2099. doi: 10.1016/j.jde.2011.07.011.

[24]

H. C. Nathanson and R. A. Wickstrom, A Resonant gate silicone surface transistor with high Q band pass properties, Applied Physics Letters, 7 (1965), 84-86.

[25]

H. C. Nathanson, W. E. Newell and R. A. Wickstrom, et al, The resonant gate transistor, IEEE Transactions on Electron Devices, 14 (1967), 117–133.

[26]

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000. doi: 10.1137/1.9780898719468.

[27]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.

[28]

J. I. SiddiqueR. Deaton and E. Sabo, An experimental investigation of the theory of electrostatic deflections, Journal of Electrostatics, 69 (2011), 1-6.

[29]

D. Ye and F. Zhou, A generalized two dimensional Emden-Fowler equation with exponential nonlinearity, Calculus of Variations and Partial Differential Equations, 13 (2001), 141-158. doi: 10.1007/PL00009926.

Figure 1.  An idealized MEMS capacitor
Figure 2.  The branch of solutions $u(0)$ as a function of $\lambda$: (a) $f(x) = |2x|$; (b) $f(x)\equiv1$
Figure 3.  The branch of solutions $u(0, 0)$ as a function of $\lambda$:(a) $f(x, y) = \sqrt{x^2+y^2}$; (b) $\lambda = 10$, $u_{\lambda}$, $u_{\lambda^*}$, and $u^+_{\lambda}$
Figure 4.  The branch of solutions $u(0, 0)$ as a function of $\lambda$:(a) $f(x, y)\equiv1$; (b) $\lambda = 2.5$, $u_{\lambda}$, $u_{\lambda^*}$ and $u^+_{\lambda}$; (c) $\lambda = 1.6$, four corresponding solutions
Figure 5.  1D, $\tau$ = 0.01. (a) Semi-implicit scheme; (b) Implicit scheme; (c) Convergence: $error = \|u^n-u_{\lambda}\|$
Figure 6.  1D, $M = 199$, $f(x) = |2x|$. (a) $\tau = 0.01$, $\lambda = 4.0$, $u\_ini = $pointwise_ini; (b) $\tau = 0.01$, $\lambda = 4.0$, $u\_ini$ is nonsymmetric; (c) touchdown phenomenon: $\lambda$ = 4.45, $\tau$ = 0.001
Figure 7.  2D, $\lambda$ = 10.0, $f(x, y) = \sqrt{x^2+y^2}$, $\tau$ = 0.01, $M = 29$. (a) The global solution when $t = 100\tau$; (b) Semi-implicit scheme; (c) Implicit scheme; (d) Convergence
Figure 8.  2D, $\lambda$ = 10.0, $f(x, y) = \sqrt{x^2+y^2}$, $\tau$ = 0.01, $M = 29$. (a) Semi-implicit scheme; (b) Implicit scheme; (c) Convergence
Figure 9.  2D, $f(x, y) = \sqrt{x^2+y^2}$, touchdown phenomenon. (a) Global solution when $t = 683\tau$; (b) Section $y = 0$
Figure 10.  The main idea of the continuation method
[1]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[2]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[3]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[4]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[5]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[6]

Xiaofeng Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1057-1070. doi: 10.3934/dcdsb.2009.11.1057

[7]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[8]

Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002

[9]

Gábor Domokos, Domokos Szász. Ulam's scheme revisited: digital modeling of chaotic attractors via micro-perturbations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 859-876. doi: 10.3934/dcds.2003.9.859

[10]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[11]

Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641

[12]

Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis. A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences & Engineering, 2014, 11 (4) : 679-721. doi: 10.3934/mbe.2014.11.679

[13]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[14]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[15]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[16]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[17]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[18]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[19]

Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250

[20]

I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial & Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]