• Previous Article
    Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case
  • DCDS-S Home
  • This Issue
  • Next Article
    Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems
doi: 10.3934/dcdss.2019108

Magnetic forces in and on a magnet

Laboratoire de Génie électrique et électronique de Paris (GeePs), Universities UPMC and UPSud, Gif-sur-Yvette, France

Thanks to Alain Léger and Frédéric Bouillault for pointed questions

Received  January 2018 Revised  April 2018 Published  November 2018

Given the shape of a magnet and its magnetization, point by point, which force does it exert on itself, also point by point? We explain what 'force' means in such a context and how to define it by using the Virtual Power Principle. Mathematically speaking, this force is a vector-valued distribution, with Dirac-like concentrations on surfaces across which the magnetization is discontinuous, i.e., material interfaces. To find these concentrations, we express the force as the divergence of a (symmetric) 2-tensor which generalizes a little the classical Maxwell tensor.

Citation: Alain Bossavit. Magnetic forces in and on a magnet. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019108
References:
[1]

J. G. van Bladel, Unusual boundary conditions at an interface, IEEE A.P. Mag., 33 (1991), 57-58.

[2]

A. Bossavit, Forces inside a magnet, Int. Compumag Soc. Newsletter, 11 (2004), 4-12.

[3]

A. Bossavit, Bulk forces and interface forces in assemblies of magnetized pieces of matter, IEEE Trans. Magn., 52 (2016), Art. 7003504.

[4]

H. S. ChoiI. H. Park and S. H. Lee, Concept of virtual airgap and its application for forces computations, IEEE Trans. Magn., 42 (2006), 663-666.

[5]

H. Gouin and J.-F. Debieve, Variational principle involving the stress tensor in elastodynamics, Int. J. Engng Sc., 24 (1986), 1057-1066.

[6]

E. Kröner, Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids & Structures, 38 (2001), 1115-1134.

[7]

A. R. Lee and T. M. Kalotas, A note on unconventional Gaussian surfaces, Am. J. Phys., 54 (1986), 753-754.

[8]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, 1983.

[9]

P. Penfield Jr., Hamilton's principle for fluids, Phys. Fluids, 9 (1966), 1184-1194.

[10]

K. ReichertH. Freundl and W. Vogt, The calculation of forces and torques within numerical magnetic field calculation methods, Compumag, (1976), 64-73.

[11]

W. G. V. Rosser, Classical Electromagnetism via Relativity, An Alternative Approach to Maxwell's Equations, Butterworths, London, 1968.

[12]

J. M. Souriau, Physics and geometry, Found. Phys., 13 (1983), 133-151. doi: 10.1007/BF01889416.

[13]

A. N. WignallA. J. Gilbert and S. J. Yang, Calculation of forces on magnetised ferrous cores using the Maxwell stress tensor, IEEE Trans. Magn., 24 (1988), 459-462.

show all references

References:
[1]

J. G. van Bladel, Unusual boundary conditions at an interface, IEEE A.P. Mag., 33 (1991), 57-58.

[2]

A. Bossavit, Forces inside a magnet, Int. Compumag Soc. Newsletter, 11 (2004), 4-12.

[3]

A. Bossavit, Bulk forces and interface forces in assemblies of magnetized pieces of matter, IEEE Trans. Magn., 52 (2016), Art. 7003504.

[4]

H. S. ChoiI. H. Park and S. H. Lee, Concept of virtual airgap and its application for forces computations, IEEE Trans. Magn., 42 (2006), 663-666.

[5]

H. Gouin and J.-F. Debieve, Variational principle involving the stress tensor in elastodynamics, Int. J. Engng Sc., 24 (1986), 1057-1066.

[6]

E. Kröner, Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids & Structures, 38 (2001), 1115-1134.

[7]

A. R. Lee and T. M. Kalotas, A note on unconventional Gaussian surfaces, Am. J. Phys., 54 (1986), 753-754.

[8]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, 1983.

[9]

P. Penfield Jr., Hamilton's principle for fluids, Phys. Fluids, 9 (1966), 1184-1194.

[10]

K. ReichertH. Freundl and W. Vogt, The calculation of forces and torques within numerical magnetic field calculation methods, Compumag, (1976), 64-73.

[11]

W. G. V. Rosser, Classical Electromagnetism via Relativity, An Alternative Approach to Maxwell's Equations, Butterworths, London, 1968.

[12]

J. M. Souriau, Physics and geometry, Found. Phys., 13 (1983), 133-151. doi: 10.1007/BF01889416.

[13]

A. N. WignallA. J. Gilbert and S. J. Yang, Calculation of forces on magnetised ferrous cores using the Maxwell stress tensor, IEEE Trans. Magn., 24 (1988), 459-462.

Figure 1.  Notations for the 'pillbox trick'. The pillbox $\Sigma$ is a flat volume containing a part of $S$. The normal $n$ to $S$ goes from $D$ (magnetized region, here) to $D'$ (non-magnetized, air for instance). We reserve the square brackets, as here in $[M],$ to denote the jump of some quantity. The jump $[M]$ of the magnetization $M$ across surface $S$ is its value on the "upstream" side of $S$ minus its value on the "downstream" side, as both defined by the direction of the normal field $n$. Jumps of other vector or scalar quantities are defined similarly.
[1]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[2]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[3]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[4]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[5]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[6]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[7]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[8]

Tian Ma, Shouhong Wang. Unified field equations coupling four forces and principle of interaction dynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1103-1138. doi: 10.3934/dcds.2015.35.1103

[9]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[10]

Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems & Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033

[11]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[12]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[13]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[14]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[15]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[16]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[17]

Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073

[18]

Joel Spruck, Yisong Yang. Charged cosmological dust solutions of the coupled Einstein and Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 567-589. doi: 10.3934/dcds.2010.28.567

[19]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[20]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (10)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]