doi: 10.3934/dcdss.2019091

A high precision data encryption algorithm in wireless network mobile communication

1. 

School of Computer, Pingdingshan University, Pingdingshan, China

2. 

College of Information Engineering, Pingdingshan University, Pingdingshan, China

3. 

Dept. of Mathematics and Statistics, Winona State University, Winona, MN 55987, USA

* Corresponding author: Aiwan Fan

Received  July 2017 Revised  December 2017 Published  November 2018

At present, the MD5 based data encryption algorithm for wireless network mobile communication cannot effectively detect the intrusion data in the mobile communication. Redundant data is not removed, the efficiency of data encryption is low, and the overall communication security is poor. In this paper, a MDEA based data encryption algorithm for wireless network mobile communication is proposed. By applying normalization of communication data to DBN model, using the way of changing one parameter while keeping others, the optimal DBN detection model is built to achieve high-precision detection of intrusion data. Using the signal intensity at different times, the speed and process time of the data level movements are estimated. By estimating the results, the redundant data and inappropriate data are removed, and performed the MDEA operation based on the secret data, introduced random numbers and timestamps to prevent the foreign infiltrations. Experiments show that the algorithm can not only improve the detection quality of intrusion data, but also enhance the cleaning effect of redundant data and in the communication, and enhance data security.

Citation: Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019091
References:
[1]

P. A., System and method for combining deduplication and encryption of data, 2015.

[2]

J. Ahmad and S. O. Hwang, Chaos-based diffusion for highly autocorrelated data in encryption algorithms, Nonlinear Dynamics, 82 (2015), 1839-1850. doi: 10.1007/s11071-015-2281-0.

[3]

A. ArgyrisE. Pikasis and D. Syvridis, Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators, Journal of Lightwave Technology, 34 (2016), 5325-5331.

[4]

J. L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, 17 (2006), 13-30.

[5]

L. BossuetN. DattaC. Mancillas-López and M. Nandi, Elmd: A pipelineable authenticated encryption and its hardware implementation, IEEE Transactions on Computers, 65 (2016), 3318-3331. doi: 10.1109/TC.2016.2529618.

[6]

M. D. ChampiriS. SajjadiS. H. Mousavizadegan and F. Moodi, A fuzzy system for evaluation of deteriorated marine steel structures, Journal of Intelligent & Fuzzy Systems, 32 (2017), 1945-1958.

[7]

H. ChenX. Du and Z. Liu, Optical hyperspectral data encryption in spectrum domain by using 3d arnold and gyrator transforms, Spectroscopy Letters, 49 (2016), 103-107.

[8]

B. CuiZ. Liu and L. Wang, Key-aggregate searchable encryption (kase) for group data sharing via cloud storage, IEEE Transactions on Computers, 65 (2016), 2374-2385. doi: 10.1109/TC.2015.2389959.

[9]

W. D. H., Data authentication and security assurance based on distributed storage system, Journal of China Academy of Electronics and Information Technology, 1 (2015), 613-619.

[10]

M. Gomez-BarreroE. MaioranaJ. GalballyP. Campisi and J. Fierrez, Multi-biometric template protection based on homomorphic encryption, Pattern Recognition, 67 (2017), 149-163.

[11]

Y. JiangG. LiW. CheY. LiuB. XuG. ShanD. ZhuZ. Su and M. R. Bryce, A neutral dinuclear ir(ⅲ) complex for anti-counterfeiting and data encryption, Chemical Communications, 53 (2017), 3022-3025.

[12]

M. Khan, A novel image encryption scheme based on multiple chaotic s-boxes, Nonlinear Dynamics, 82 (2015), 527-533. doi: 10.1007/s11071-015-2173-3.

[13]

A. KhedrG. Gulak and V. Vaikuntanathan, Shield: Scalable homomorphic implementation of encrypted data-classifiers, IEEE Transactions on Computers, 65 (2016), 2848-2858. doi: 10.1109/TC.2015.2500576.

[14]

K. Lata, Secure data aggregation in wireless sensor networks using homomorphic encryption, International Journal of Electronics, 102 (2015), 690-702.

[15]

M. A. Lei, H. X. Yang and J. P. Liu, User privacy data storage method under big data environment, Computer Simulation, 465-468.

[16]

H. LiD. LiuY. Dai and T. H. Luan, Engineering searchable encryption of mobile cloud networks: When qoe meets qop, IEEE Wireless Communications, 22 (2015), 74-80.

[17]

M. LiD. XiaoA. Kulsoom and Y. Zhang, Improved reversible data hiding for encrypted images using full embedding strategy, Electronics Letters, 51 (2015), 690-691.

[18]

H. Y. Lin, Location-based data encryption for wireless sensor network using dynamic keys, Wireless Networks, 21 (2015), 1-8.

[19]

S. T. OpitzK. NeumannS. Bernholt and U. Harms, How do students understand energy in biology, chemistry, and physics development and validation of an assessment instrument, Journal of Mathematics Science and Technology Education, 13 (2017), 3019-3042.

[20]

S. T. OpitzK. NeumannS. Bernholt and U. Harms, Students' energy understanding across biology, chemistry, and physics contexts, Journal of Interdisciplinary Mathematics, 20 (2017), 397-415.

[21]

Z. H. QianD. FengX. Wang and Q. Li, Multipath routing algorithm in m2m network based on load balancing, Journal of Jilin University(Engineering and Technology Edition), 46 (2016), 934-940.

[22]

S. TrejosJ. F. BarreraA. VelezM. Tebaldi and R. Torroba, Optical approach for the efficient data volume handling in experimentally encrypted data, Journal of Optics, 18 (2016), 065702.

[23]

J. Xu, Data distributed momdatory secure access method in cloud computing environment, Bulletin of Science & Technology, 189-192.

show all references

References:
[1]

P. A., System and method for combining deduplication and encryption of data, 2015.

[2]

J. Ahmad and S. O. Hwang, Chaos-based diffusion for highly autocorrelated data in encryption algorithms, Nonlinear Dynamics, 82 (2015), 1839-1850. doi: 10.1007/s11071-015-2281-0.

[3]

A. ArgyrisE. Pikasis and D. Syvridis, Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators, Journal of Lightwave Technology, 34 (2016), 5325-5331.

[4]

J. L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, 17 (2006), 13-30.

[5]

L. BossuetN. DattaC. Mancillas-López and M. Nandi, Elmd: A pipelineable authenticated encryption and its hardware implementation, IEEE Transactions on Computers, 65 (2016), 3318-3331. doi: 10.1109/TC.2016.2529618.

[6]

M. D. ChampiriS. SajjadiS. H. Mousavizadegan and F. Moodi, A fuzzy system for evaluation of deteriorated marine steel structures, Journal of Intelligent & Fuzzy Systems, 32 (2017), 1945-1958.

[7]

H. ChenX. Du and Z. Liu, Optical hyperspectral data encryption in spectrum domain by using 3d arnold and gyrator transforms, Spectroscopy Letters, 49 (2016), 103-107.

[8]

B. CuiZ. Liu and L. Wang, Key-aggregate searchable encryption (kase) for group data sharing via cloud storage, IEEE Transactions on Computers, 65 (2016), 2374-2385. doi: 10.1109/TC.2015.2389959.

[9]

W. D. H., Data authentication and security assurance based on distributed storage system, Journal of China Academy of Electronics and Information Technology, 1 (2015), 613-619.

[10]

M. Gomez-BarreroE. MaioranaJ. GalballyP. Campisi and J. Fierrez, Multi-biometric template protection based on homomorphic encryption, Pattern Recognition, 67 (2017), 149-163.

[11]

Y. JiangG. LiW. CheY. LiuB. XuG. ShanD. ZhuZ. Su and M. R. Bryce, A neutral dinuclear ir(ⅲ) complex for anti-counterfeiting and data encryption, Chemical Communications, 53 (2017), 3022-3025.

[12]

M. Khan, A novel image encryption scheme based on multiple chaotic s-boxes, Nonlinear Dynamics, 82 (2015), 527-533. doi: 10.1007/s11071-015-2173-3.

[13]

A. KhedrG. Gulak and V. Vaikuntanathan, Shield: Scalable homomorphic implementation of encrypted data-classifiers, IEEE Transactions on Computers, 65 (2016), 2848-2858. doi: 10.1109/TC.2015.2500576.

[14]

K. Lata, Secure data aggregation in wireless sensor networks using homomorphic encryption, International Journal of Electronics, 102 (2015), 690-702.

[15]

M. A. Lei, H. X. Yang and J. P. Liu, User privacy data storage method under big data environment, Computer Simulation, 465-468.

[16]

H. LiD. LiuY. Dai and T. H. Luan, Engineering searchable encryption of mobile cloud networks: When qoe meets qop, IEEE Wireless Communications, 22 (2015), 74-80.

[17]

M. LiD. XiaoA. Kulsoom and Y. Zhang, Improved reversible data hiding for encrypted images using full embedding strategy, Electronics Letters, 51 (2015), 690-691.

[18]

H. Y. Lin, Location-based data encryption for wireless sensor network using dynamic keys, Wireless Networks, 21 (2015), 1-8.

[19]

S. T. OpitzK. NeumannS. Bernholt and U. Harms, How do students understand energy in biology, chemistry, and physics development and validation of an assessment instrument, Journal of Mathematics Science and Technology Education, 13 (2017), 3019-3042.

[20]

S. T. OpitzK. NeumannS. Bernholt and U. Harms, Students' energy understanding across biology, chemistry, and physics contexts, Journal of Interdisciplinary Mathematics, 20 (2017), 397-415.

[21]

Z. H. QianD. FengX. Wang and Q. Li, Multipath routing algorithm in m2m network based on load balancing, Journal of Jilin University(Engineering and Technology Edition), 46 (2016), 934-940.

[22]

S. TrejosJ. F. BarreraA. VelezM. Tebaldi and R. Torroba, Optical approach for the efficient data volume handling in experimentally encrypted data, Journal of Optics, 18 (2016), 065702.

[23]

J. Xu, Data distributed momdatory secure access method in cloud computing environment, Bulletin of Science & Technology, 189-192.

Figure 1.  multi-layer RBM learning process
Figure 2.  the radiant range of the readers
Figure 3.  data processing structure
Figure 4.  data output structure
Figure 5.  MEDA algorithm structure
Figure 6.  Comparison of the effects of different algorithms on Intrusion Detection
Figure 7.  Comparison of data cleaning effect by different algorithms
Figure 8.  Comparison of security effects between different data encryption algorithms
[1]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1371-1384. doi: 10.3934/dcdss.2019094

[2]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[3]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[4]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1457-1470. doi: 10.3934/dcdss.2019100

[5]

Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763

[6]

Sangkyu Baek, Bong Dae Choi. Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network. Journal of Industrial & Management Optimization, 2009, 5 (3) : 481-492. doi: 10.3934/jimo.2009.5.481

[7]

Hong Il Cho, Myungwoo Lee, Ganguk Hwang. A cross-layer relay selection scheme of a wireless network with multiple relays under Rayleigh fading. Journal of Industrial & Management Optimization, 2014, 10 (1) : 1-19. doi: 10.3934/jimo.2014.10.1

[8]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 887-900. doi: 10.3934/dcdss.2019059

[9]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[10]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[11]

Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 37-53. doi: 10.3934/amc.2015.9.37

[12]

Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034

[13]

Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial & Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074

[14]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[15]

Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267

[16]

Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks & Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627

[17]

Lizhong Peng, Shujun Dang, Bojin Zhuang. Localization operator and digital communication capacity of channel. Communications on Pure & Applied Analysis, 2007, 6 (3) : 819-827. doi: 10.3934/cpaa.2007.6.819

[18]

Jesus R. Artalejo, Tuan Phung-Duc. Markovian retrial queues with two way communication. Journal of Industrial & Management Optimization, 2012, 8 (4) : 781-806. doi: 10.3934/jimo.2012.8.781

[19]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1187-1198. doi: 10.3934/dcdss.2019082

[20]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]