doi: 10.3934/dcdss.2019090

Efficient extraction algorithm for local fuzzy features of dynamic images

1. 

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

2. 

Department of Technology, National Deep Sea Center, Qingdao, China

3. 

Qingdao National Laboratory for Marine Science and Technology, Scientific and Technology Infranstructure Department, Qingdao, China

4. 

Qingdao National Laboratory for Marine Science and Technology, Sharing Platform for Scientific Research Vessels and Infrastructures, Qingdao, China

* Corresponding author: Yunsai Chen

Received  June 2017 Revised  November 2017 Published  November 2018

Aiming at the poor extraction effect of the current extraction algorithm for local fuzzy features of dynamic images and the low extraction accuracy, a new algorithm based on FAST corner is proposed to extract the local fuzzy feature of dynamic images efficiently. Through analyzing the mode distortion existing in the local fuzzy features of dynamic images, and processing the spatial domain of dynamic images by using point processing and neighborhood processing, and processing the image frequency domain by filtering, the preprocessing of dynamic images and the effect of local fuzzy feature extraction of dynamic images are improved. On the basis of this, aiming at the shortcomings of FAST corner extraction of local fuzzy features of dynamic images, this paper puts forward the idea of algorithm optimization, and analyzes the realization process of the improved algorithm to achieve the algorithm optimization processing and complete the local fuzzy feature extraction of dynamic images. Based on the least squares method, the inaccurate local fuzzy features in the dynamic images are removed to ensure the accuracy of feature extraction. Experimental results show that the proposed algorithm can accurately extract the local fuzzy features of dynamic images, and the extraction results are better.

Citation: Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019090
References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768.

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77.

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272.

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184.

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015.

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024. doi: 10.1109/TIP.2014.2372619.

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10.

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278.

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86.

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453.

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079.

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427. doi: 10.1109/TIP.2015.2495116.

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537.

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460.

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266.

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321.

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400.

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851.

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338.

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236.

show all references

References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768.

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77.

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272.

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184.

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015.

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024. doi: 10.1109/TIP.2014.2372619.

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10.

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278.

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86.

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453.

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079.

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427. doi: 10.1109/TIP.2015.2495116.

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537.

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460.

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266.

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321.

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400.

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851.

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338.

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236.

Figure 1.  Construction of the Gaussian pyramid
Figure 2.  FAST feature detection block diagram
Figure 3.  Composition of the eigenvector
Figure 4.  Images used in the experiment
Figure 5.  Preprocessing effect analysis using the proposed algorithm
Figure 6.  Comparison of image feature extraction effect of different algorithms
[1]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[2]

Xiaohong Zhu, Lihe Zhou, Zili Yang, Joyati Debnath. A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1265-1279. doi: 10.3934/dcdss.2019087

[3]

Karol Mikula, Róbert Špir, Nadine Peyriéras. Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 953-967. doi: 10.3934/dcdss.2015.8.953

[4]

Xueyan Wu. An algorithm for reversible information hiding of encrypted medical images in homomorphic encrypted domain. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1441-1455. doi: 10.3934/dcdss.2019099

[5]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018134

[6]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1427-1440. doi: 10.3934/dcdss.2019098

[7]

Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1281-1296. doi: 10.3934/dcdss.2019088

[8]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1199-1218. doi: 10.3934/dcdss.2019083

[9]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[10]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[11]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[12]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[13]

Yi Jiang, Chuan Luo, Shenggui Ling. An efficient cutting plane algorithm for the smallest enclosing circle problem. Journal of Industrial & Management Optimization, 2017, 13 (1) : 147-153. doi: 10.3934/jimo.2016009

[14]

Honggang Yu. An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 901-914. doi: 10.3934/dcdss.2019060

[15]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[16]

Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial & Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791

[17]

Ming-Jong Yao, Tien-Cheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multi-stage just-in-time supply chain systems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 11-32. doi: 10.3934/jimo.2009.5.11

[18]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018164

[19]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 887-900. doi: 10.3934/dcdss.2019059

[20]

Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial & Management Optimization, 2019, 15 (1) : 235-259. doi: 10.3934/jimo.2018041

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (11)
  • HTML views (61)
  • Cited by (0)

[Back to Top]