doi: 10.3934/dcdss.2019087

A new text information extraction algorithm of video image under multimedia environment

1. 

Qujing Power Supply Bureau, Yunnan Power Grid Co., Ltd., Qujing 655600, China

2. 

Dept. of Mathematics and Statistics, Winona State University, Winona, MN 55987, USA

* Corresponding author: Xiaohong Zhu

Received  July 2017 Revised  December 2017 Published  November 2018

At present, under the multimedia environment, the accuracy of the text information extraction of video images is poor. Moreover, the extraction process is complicated. In this paper, a text information extraction algorithm for video image based on time adaptive model is proposed. Using Sobel edge detection operator, text edge of the image is extracted. Using OSTU algorithm. the adaptive threshold is obtained, to make global binary processing smooth. Through selective masking smoothing, some irrelevant background is then filtered out. By morphological method, the text area is then merged. Finally, using the connected domain, the text area is extracted, to get the text block, and obtain the text information of the video image. On this basis, according to the color feature of text in video images, through user interaction, the learning process of color online machine based on the generated time and with adaptive model can be obtained to detect the same caption in the video sequence, so as to realize the text information extraction algorithm for video image in multimedia environment. The experimental results show that the proposed algorithm can accurately extract the text information, and the speed of extraction is faster.

Citation: Xiaohong Zhu, Lihe Zhou, Zili Yang, Joyati Debnath. A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019087
References:
[1]

R. AfshariB. S. Gildeh and M. Sarmad, Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors, Journal of Intelligent & Fuzzy Systems, 33 (2017), 503-514.

[2]

F. AliE. K. Kim and Y. G. Kim, Type-2 fuzzy ontology-based opinion mining and information extraction: A proposal to automate the hotel reservation system, Applied Intelligence, 42 (2015), 481-500.

[3]

B. C. Battaglia Onofrio Rosario—Di Paola, K-means clustering to study how student reasoning lines can be modified by a learning activity based on feynman's unifying approach., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 2005-2038.

[4]

A. BiniazP. BoseA. Maheshwari and M. Smid, Packing plane perfect matchings into a point set, Discrete Mathematics and Theoretical Computer Science, 17 (2015), 119-142.

[5]

G. BrinkmannS. DantasC. M. H. D. FigueiredoM. Preissmann and D. Sasaki, Snarks with total chromatic number 5, Discrete Mathematics & Theoretical Computer Science, 17 (2015), 369-382.

[6]

C. CardellinoL. A. AlemanyS. Villata and E. Cabrio, Improvements in information extraction in legal text by active learning, Ai Magazine, 18 (2015), 65-79.

[7]

C. Chen and J. Shi, Chinese local government's behavior in land supply in the context of housing market macro-control, Journal of Interdisciplinary Mathematics, 20 (2017), 1289-1306.

[8]

R. Fagin, B. Kimelfeld, F. Reiss and S. Vansummeren, Document spanners: A formal approach to information extraction, Journal of the Acm, 62 (2015), Art. 12, 51 pp. doi: 10.1145/2699442.

[9]

W. Gao and W. Wang, A tight neighborhood union condition on fractional $(g,f,n',m)$-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298. doi: 10.4064/cm6959-8-2016.

[10]

W. GaoL. ZhuY. Guo and K. Wang, Ontology learning algorithm for similarity measuring and ontology mapping using linear programming, Journal of Intelligent & Fuzzy Systems, 33 (2017), 3153-3163.

[11]

G. H., L. J. and Y. Y., Automated road information extraction from mobile laser scanning data, IEEE Transactions on Intelligent Transportation Systems, 25 (2015), 194-205.

[12]

C. C. Hua, J. Feng, L. I. Xue and Y. B. Guo, A method of signal extraction in especial backscatter ionogram, Journal of China Academy of Electronics & Information Technology, 43-48.

[13]

R. LiangW. ShenX. X. Li and H. Wang, Bayesian multi-distribution-based discriminative feature extraction for 3d face recognition, Information Sciences, 320 (2015), 406-417.

[14]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, EURASIA Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.

[15]

H. LiuY. WangY. CaiL. MaX. Xing and W. Fan, Tongbo gold ore granite zircon hf isotopic characteristics of spectral image feature extraction, Bulletin of Science and Technology, 37 (2013), 30-34.

[16]

T. OtakeN. ItohM. Ohata and N. Hanari, Optimization of microwave-assisted extraction for the determination of organic flame retardants in acrylonitrile butadiene styrene, Analytical Letters, 48 (2015), 2319-2328.

[17]

J. Patrick and M. Li, High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge, Journal of the American Medical Informatics Association, 17 (2010), 524-527.

[18]

S. E. A. Raza, Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain, 7, 2015.

[19]

J. Sun, J. Pang and Z. Zhang, Recognition of vehicle license plate locating based on color feature and improved canny operator, Journal of Jilin University (Science Edition), 693-697.

[20]

Z. X., W. P. and C. C., Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge, 1404-1422.

[21]

L. I. Yue-Jie, Specific text in natural scene image optimization identification research and simulation, Computer Simulation, 357-360.

[22]

D. ZhangJ. GuoX. Lei and C. Zhu, Note: Sound recovery from video using svd-based information extraction., Review of Scientific Instruments, 87 (2016), 516-198.

[23]

J. Zhang, W. Geng, L. Zhuo, Q. Tian and Y. Cao, Multiscale target extraction using a spectral saliency map for a hyperspectral image, Applied Optics, 55 (2016), 8089.

show all references

References:
[1]

R. AfshariB. S. Gildeh and M. Sarmad, Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors, Journal of Intelligent & Fuzzy Systems, 33 (2017), 503-514.

[2]

F. AliE. K. Kim and Y. G. Kim, Type-2 fuzzy ontology-based opinion mining and information extraction: A proposal to automate the hotel reservation system, Applied Intelligence, 42 (2015), 481-500.

[3]

B. C. Battaglia Onofrio Rosario—Di Paola, K-means clustering to study how student reasoning lines can be modified by a learning activity based on feynman's unifying approach., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 2005-2038.

[4]

A. BiniazP. BoseA. Maheshwari and M. Smid, Packing plane perfect matchings into a point set, Discrete Mathematics and Theoretical Computer Science, 17 (2015), 119-142.

[5]

G. BrinkmannS. DantasC. M. H. D. FigueiredoM. Preissmann and D. Sasaki, Snarks with total chromatic number 5, Discrete Mathematics & Theoretical Computer Science, 17 (2015), 369-382.

[6]

C. CardellinoL. A. AlemanyS. Villata and E. Cabrio, Improvements in information extraction in legal text by active learning, Ai Magazine, 18 (2015), 65-79.

[7]

C. Chen and J. Shi, Chinese local government's behavior in land supply in the context of housing market macro-control, Journal of Interdisciplinary Mathematics, 20 (2017), 1289-1306.

[8]

R. Fagin, B. Kimelfeld, F. Reiss and S. Vansummeren, Document spanners: A formal approach to information extraction, Journal of the Acm, 62 (2015), Art. 12, 51 pp. doi: 10.1145/2699442.

[9]

W. Gao and W. Wang, A tight neighborhood union condition on fractional $(g,f,n',m)$-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298. doi: 10.4064/cm6959-8-2016.

[10]

W. GaoL. ZhuY. Guo and K. Wang, Ontology learning algorithm for similarity measuring and ontology mapping using linear programming, Journal of Intelligent & Fuzzy Systems, 33 (2017), 3153-3163.

[11]

G. H., L. J. and Y. Y., Automated road information extraction from mobile laser scanning data, IEEE Transactions on Intelligent Transportation Systems, 25 (2015), 194-205.

[12]

C. C. Hua, J. Feng, L. I. Xue and Y. B. Guo, A method of signal extraction in especial backscatter ionogram, Journal of China Academy of Electronics & Information Technology, 43-48.

[13]

R. LiangW. ShenX. X. Li and H. Wang, Bayesian multi-distribution-based discriminative feature extraction for 3d face recognition, Information Sciences, 320 (2015), 406-417.

[14]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, EURASIA Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.

[15]

H. LiuY. WangY. CaiL. MaX. Xing and W. Fan, Tongbo gold ore granite zircon hf isotopic characteristics of spectral image feature extraction, Bulletin of Science and Technology, 37 (2013), 30-34.

[16]

T. OtakeN. ItohM. Ohata and N. Hanari, Optimization of microwave-assisted extraction for the determination of organic flame retardants in acrylonitrile butadiene styrene, Analytical Letters, 48 (2015), 2319-2328.

[17]

J. Patrick and M. Li, High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge, Journal of the American Medical Informatics Association, 17 (2010), 524-527.

[18]

S. E. A. Raza, Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain, 7, 2015.

[19]

J. Sun, J. Pang and Z. Zhang, Recognition of vehicle license plate locating based on color feature and improved canny operator, Journal of Jilin University (Science Edition), 693-697.

[20]

Z. X., W. P. and C. C., Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge, 1404-1422.

[21]

L. I. Yue-Jie, Specific text in natural scene image optimization identification research and simulation, Computer Simulation, 357-360.

[22]

D. ZhangJ. GuoX. Lei and C. Zhu, Note: Sound recovery from video using svd-based information extraction., Review of Scientific Instruments, 87 (2016), 516-198.

[23]

J. Zhang, W. Geng, L. Zhuo, Q. Tian and Y. Cao, Multiscale target extraction using a spectral saliency map for a hyperspectral image, Applied Optics, 55 (2016), 8089.

Figure 1.  Sobel operator
Figure 2.  the edge detection results of the proposed method
Figure 3.  Analysis of text location results by the proposed method
Figure 4.  results of text segmentation by different algorithms
Figure 5.  Comparison of the results of text information extraction by different algorithms
Table 1.  Comparison of the running time of text information extraction by different methods of video images
imageThe proposed method/sWavelet neural network algorithm /sMean-Shift algorithm /s
12.133.564.12
22.454.174.56
32.063.434.03
42.373.874.42
52.183.644.24
62.253.794.31
imageThe proposed method/sWavelet neural network algorithm /sMean-Shift algorithm /s
12.133.564.12
22.454.174.56
32.063.434.03
42.373.874.42
52.183.644.24
62.253.794.31
[1]

Bong Joo Kim, Gang Uk Hwang, Yeon Hwa Chung. Traffic modelling and bandwidth allocation algorithm for video telephony service traffic. Journal of Industrial & Management Optimization, 2009, 5 (3) : 541-552. doi: 10.3934/jimo.2009.5.541

[2]

Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1311-1325. doi: 10.3934/dcdss.2019090

[3]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089

[4]

Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1341-1354. doi: 10.3934/dcdss.2019092

[5]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[6]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[7]

Jinsong Xu. Reversible hidden data access algorithm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1219-1232. doi: 10.3934/dcdss.2019084

[8]

Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1251-1264. doi: 10.3934/dcdss.2019086

[9]

Xueyan Wu. An algorithm for reversible information hiding of encrypted medical images in homomorphic encrypted domain. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1441-1455. doi: 10.3934/dcdss.2019099

[10]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1385-1398. doi: 10.3934/dcdss.2019095

[11]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[12]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1233-1249. doi: 10.3934/dcdss.2019085

[13]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1427-1440. doi: 10.3934/dcdss.2019098

[14]

Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1281-1296. doi: 10.3934/dcdss.2019088

[15]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1199-1218. doi: 10.3934/dcdss.2019083

[16]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1413-1426. doi: 10.3934/dcdss.2019097

[17]

Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223

[18]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[19]

J. Kent Poots, Nick Cercone. First steps in the investigation of automated text annotation with pictures. Big Data & Information Analytics, 2017, 2 (2) : 97-106. doi: 10.3934/bdia.2017001

[20]

Yang Wang, Zhengfang Zhou. Source extraction in audio via background learning. Inverse Problems & Imaging, 2013, 7 (1) : 283-290. doi: 10.3934/ipi.2013.7.283

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]