doi: 10.3934/dcdss.2019086

Automatic tracking and positioning algorithm for moving targets in complex environment

1. 

Unmanned Aerial Vehicle Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. 

Department of Mathematics UMBA, University of Mostaganem Algeria, Algeria

* Corresponding author: Rong Liu

Received  June 2017 Revised  November 2017 Published  November 2018

Nowadays, when moving targets are located in complex environment, the positioning algorithm takes longer time, and the result is not consistent with the actual positioning of the moving target, which has the problem of low positioning efficiency and inaccurate positioning results. In this paper, a moving target automatic tracking and positioning algorithm is proposed in the complex environment, which establishes the geodetic coordinate system and the space rectangular coordinate system, and completes the transformation between the geodetic coordinate system and the rectangular coordinate system, so as to improve the accuracy of the positioning result. The signal is rebuilt and the MIMO radar positioning model is used to complete the automatic tracking and positioning of the moving target in complex environment, to reduce the time consuming. The experimental results show that the proposed method can quickly and accurately track and locate the moving target in complex environment.

Citation: Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019086
References:
[1]

A. H. Abdullah and et al., Mathematics teachers' level of knowledge and practice on the implementation of higher-order thinking skills (hots), Eurasia Journal of Mathematics Science & Technology Education, 13 (2016), 3-17.

[2]

A. Ahadi and A. Dehghan, The inapproximability for the (0, 1)-additive number, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 217-226.

[3]

F. Altinay-Gazi Zehra—Altinay-Aksal, Technology as mediation tool for improving teaching profession in higher education practices, Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 803-813.

[4]

M. M. A. M. Aly and M. A. H. El-Sayed, Enhanced fault location algorithm for smart grid containing wind farm using wireless communication facilities, Iet Generation Transmission & Distribution, 10 (2016), 2231-2239.

[5]

L. B. and L. W. S., Indoor positioning method based on cosine similarity of fingerprint matching algorithm, Bulletin of Science and Technology, 3 (2017), 198-202.

[6]

T. P. S. Bains and M. R. D. Zadeh, Supplementary impedance-based fault-location algorithm for series-compensated lines, IEEE Transactions on Power Delivery, 31 (2016), 334-342.

[7]

A. Basar and M. Y. Abbasi, On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652. doi: 10.1080/09720529.2015.1130474.

[8]

T. BroughL. CiobanuM. Elder and G. Zetzsche, Permutations of context-free, et0l and indexed languages, Discrete Mathematics & Theoretical Computer Science, 17 (2016), 167-178.

[9]

J. ByrkaS. Li and B. Rybicki, Improved Approximation Algorithm for k-level Uncapacitated Facility Location Problem (with Penalties), Theory Comput. Syst., 58 (2016), 19-44. doi: 10.1007/s00224-014-9575-3.

[10]

Y. Cao, Optimal investment-reinsurance problem for an insurer with jump-diffusion risk process: correlated of brownian motions, Journal of Interdisciplinary Mathematics, 20 (2017), 497-511.

[11]

M. Chen and C. X. Xu, Analysis of optimal utilization model of coastline resources in jiangsu province, Journal of Interdisciplinary Mathematics, 20 (2017), 1441-1444.

[12]

P. S. Davis and T. L. Ray, A branch ound algorithm for the capacitated facilities location problem, Naval Research Logistics, 16 (2015), 331-344.

[13]

W. Gao and W. Wang, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298. doi: 10.4064/cm6959-8-2016.

[14]

W. GaoL. ZhuY. Guo and K. Wang, Ontology learning algorithm for similarity measuring and ontology mapping using linear programming, Journal of Intelligent & Fuzzy Systems, 33 (2017), 3153-3163.

[15]

Y. Gao, Optimization design of fast query system for retrieval information from large amount of books, Modern Electronics Technique, 9 (2016), 422-425.

[16]

M. Ghorbani, An evolutionary algorithm for a new multi-objective location-inventory model in a distribution network with transportation modes and third-party logistics providers, International Journal of Production Research, 53 (2015), 1038-1050.

[17]

R. J. Hamidi and H. Livani, Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits, IEEE Transactions on Power Delivery, 32 (2017), 135-144.

[18]

B. Hartke, Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low rder scaling with cluster size, Journal of Computational Chemistry, 20 (2015), 1752-1759.

[19]

T. JinY. F. Niu and L. Zhou, Methods of evaluating cognitive performance of products digital interface, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 295-308.

[20]

Z. LiuM. ChaoJ. ZhangX. ZhangY. Liu and J. Zhang, Research on mathematical properties of localization algorithm based on sensor relative position in wsn, Journal of Jilin University(Information Science Edition, 6 (2015), 685-689.

[21]

G. PrestonZ. M. RadojevicC. H. Kim and V. Terzija, New settings-free fault location algorithm based on synchronised sampling, Iet Generation Transmission & Distribution, 5 (2015), 376-83.

[22]

S. SunK. DongJ. J. Xiu and Y. Liu, A passive source localization algorithm with multiple moving observers using tdoa/groa measurements based on cwls, Journal of China Academy of Electronics & Information Technology, 5 (2016), 540-546.

[23]

Y. SunJ. QiR. ZhangY. Chen and X. Du, Mapreduce based location selection algorithm for utility maximization with capacity constraints, Computing, 97 (2015), 403-423. doi: 10.1007/s00607-013-0382-5.

[24]

P. H. Tseng and K. T. Lee, A femto-aided location tracking algorithm in lte-a heterogeneous networks, IEEE Transactions on Vehicular Technology, 66 (2017), 748-762.

[25]

G. Weckman, Applying genetic algorithm to a new location and routing model of hazardous materials, International Journal of Production Research, 53 (2015), 916-928.

[26]

W. Yi, Assessment study on brain wave predictive ability to policemen's safety law enforcement, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 193-204.

[27]

J. J. Zhang and K. Qiang, Modeling of complex information system based on hierarchical decision-making theory, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 137-148.

show all references

References:
[1]

A. H. Abdullah and et al., Mathematics teachers' level of knowledge and practice on the implementation of higher-order thinking skills (hots), Eurasia Journal of Mathematics Science & Technology Education, 13 (2016), 3-17.

[2]

A. Ahadi and A. Dehghan, The inapproximability for the (0, 1)-additive number, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 217-226.

[3]

F. Altinay-Gazi Zehra—Altinay-Aksal, Technology as mediation tool for improving teaching profession in higher education practices, Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 803-813.

[4]

M. M. A. M. Aly and M. A. H. El-Sayed, Enhanced fault location algorithm for smart grid containing wind farm using wireless communication facilities, Iet Generation Transmission & Distribution, 10 (2016), 2231-2239.

[5]

L. B. and L. W. S., Indoor positioning method based on cosine similarity of fingerprint matching algorithm, Bulletin of Science and Technology, 3 (2017), 198-202.

[6]

T. P. S. Bains and M. R. D. Zadeh, Supplementary impedance-based fault-location algorithm for series-compensated lines, IEEE Transactions on Power Delivery, 31 (2016), 334-342.

[7]

A. Basar and M. Y. Abbasi, On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652. doi: 10.1080/09720529.2015.1130474.

[8]

T. BroughL. CiobanuM. Elder and G. Zetzsche, Permutations of context-free, et0l and indexed languages, Discrete Mathematics & Theoretical Computer Science, 17 (2016), 167-178.

[9]

J. ByrkaS. Li and B. Rybicki, Improved Approximation Algorithm for k-level Uncapacitated Facility Location Problem (with Penalties), Theory Comput. Syst., 58 (2016), 19-44. doi: 10.1007/s00224-014-9575-3.

[10]

Y. Cao, Optimal investment-reinsurance problem for an insurer with jump-diffusion risk process: correlated of brownian motions, Journal of Interdisciplinary Mathematics, 20 (2017), 497-511.

[11]

M. Chen and C. X. Xu, Analysis of optimal utilization model of coastline resources in jiangsu province, Journal of Interdisciplinary Mathematics, 20 (2017), 1441-1444.

[12]

P. S. Davis and T. L. Ray, A branch ound algorithm for the capacitated facilities location problem, Naval Research Logistics, 16 (2015), 331-344.

[13]

W. Gao and W. Wang, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298. doi: 10.4064/cm6959-8-2016.

[14]

W. GaoL. ZhuY. Guo and K. Wang, Ontology learning algorithm for similarity measuring and ontology mapping using linear programming, Journal of Intelligent & Fuzzy Systems, 33 (2017), 3153-3163.

[15]

Y. Gao, Optimization design of fast query system for retrieval information from large amount of books, Modern Electronics Technique, 9 (2016), 422-425.

[16]

M. Ghorbani, An evolutionary algorithm for a new multi-objective location-inventory model in a distribution network with transportation modes and third-party logistics providers, International Journal of Production Research, 53 (2015), 1038-1050.

[17]

R. J. Hamidi and H. Livani, Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits, IEEE Transactions on Power Delivery, 32 (2017), 135-144.

[18]

B. Hartke, Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low rder scaling with cluster size, Journal of Computational Chemistry, 20 (2015), 1752-1759.

[19]

T. JinY. F. Niu and L. Zhou, Methods of evaluating cognitive performance of products digital interface, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 295-308.

[20]

Z. LiuM. ChaoJ. ZhangX. ZhangY. Liu and J. Zhang, Research on mathematical properties of localization algorithm based on sensor relative position in wsn, Journal of Jilin University(Information Science Edition, 6 (2015), 685-689.

[21]

G. PrestonZ. M. RadojevicC. H. Kim and V. Terzija, New settings-free fault location algorithm based on synchronised sampling, Iet Generation Transmission & Distribution, 5 (2015), 376-83.

[22]

S. SunK. DongJ. J. Xiu and Y. Liu, A passive source localization algorithm with multiple moving observers using tdoa/groa measurements based on cwls, Journal of China Academy of Electronics & Information Technology, 5 (2016), 540-546.

[23]

Y. SunJ. QiR. ZhangY. Chen and X. Du, Mapreduce based location selection algorithm for utility maximization with capacity constraints, Computing, 97 (2015), 403-423. doi: 10.1007/s00607-013-0382-5.

[24]

P. H. Tseng and K. T. Lee, A femto-aided location tracking algorithm in lte-a heterogeneous networks, IEEE Transactions on Vehicular Technology, 66 (2017), 748-762.

[25]

G. Weckman, Applying genetic algorithm to a new location and routing model of hazardous materials, International Journal of Production Research, 53 (2015), 916-928.

[26]

W. Yi, Assessment study on brain wave predictive ability to policemen's safety law enforcement, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 193-204.

[27]

J. J. Zhang and K. Qiang, Modeling of complex information system based on hierarchical decision-making theory, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 137-148.

Figure 1.  Model of pin hole imaging
Figure 2.  Diagram of corner system $\varphi, \omega$ and $\kappa $
Figure 3.  MIMO radar model
Figure 4.  Comparison of the calculated position and the actual position of a ship
Figure 5.  Comparison of calculate longitude and actual longitude of ship
Figure 6.  Comparison of the calculated latitudes and the actual latitudes of the ship
Figure 7.  the time used for positioning by the three different methods
Table 1.  test data table of the target location algorithm
TargetShip 1Ship 2Ship 3Ship 4
Algorithm parameters$\Phi (^{\circ})$32393129
$\omega (^{\circ})$-1-1-1-1
$\kappa (^{\circ})$0.20.20.20.2
x(mm)14-16-1-23
y(mm)92-9-7
f(mm)148.51155148.51133
X$_{C}$(m)-2734008.694-2733672.0788-2734008.694-2733672.0788
Y$_{C}$(m)5120687.46805121154.10445120687.46805121154.1044
Z$_{C}$(m)2634082.84852633528.70102634082.84852633528.7010
Calculated coordinate118$^{\circ}$05.872'E,118$^{\circ}$05.572'E,118$^{\circ}$05.883'E,118$^{\circ}$05.586'E,
24$^{\circ}$33.109'N24$^{\circ}$32.779'N24$^{\circ}$33.112'N24$^{\circ}$32.773'N
Actual coordinate118$^{\circ}$05.906'E,118$^{\circ}$05.493'E,118$^{\circ}$05.896'E,118$^{\circ}$05.464'E,
24$^{\circ}$33.055'N24$^{\circ}$32.700'N24$^{\circ}$33.050'N24$^{\circ}$32.655'N
ErrorLongitude/'0.0340.0790.0130.122
Latitude/'0.0540.0790.0620.118
TargetShip 1Ship 2Ship 3Ship 4
Algorithm parameters$\Phi (^{\circ})$32393129
$\omega (^{\circ})$-1-1-1-1
$\kappa (^{\circ})$0.20.20.20.2
x(mm)14-16-1-23
y(mm)92-9-7
f(mm)148.51155148.51133
X$_{C}$(m)-2734008.694-2733672.0788-2734008.694-2733672.0788
Y$_{C}$(m)5120687.46805121154.10445120687.46805121154.1044
Z$_{C}$(m)2634082.84852633528.70102634082.84852633528.7010
Calculated coordinate118$^{\circ}$05.872'E,118$^{\circ}$05.572'E,118$^{\circ}$05.883'E,118$^{\circ}$05.586'E,
24$^{\circ}$33.109'N24$^{\circ}$32.779'N24$^{\circ}$33.112'N24$^{\circ}$32.773'N
Actual coordinate118$^{\circ}$05.906'E,118$^{\circ}$05.493'E,118$^{\circ}$05.896'E,118$^{\circ}$05.464'E,
24$^{\circ}$33.055'N24$^{\circ}$32.700'N24$^{\circ}$33.050'N24$^{\circ}$32.655'N
ErrorLongitude/'0.0340.0790.0130.122
Latitude/'0.0540.0790.0620.118
Table 2.  test data table of the target location algorithm
TargetShip 5Ship 6Ship 7Ship 8
Algorithm parameters$\Phi (^{\circ})$21242525
$\omega (^{\circ})$$-$1$-$1$-$1$-$1
$\kappa (^{\circ})$0.20.20.20.2
x(mm)$-$7$-$9$-$11$-$2
y(mm)$-$12$-$11$-$5$-$5
f(mm)166155155126.6
X$_{C}$(m)$-$2733672.0788$-$2733672.0788$-$2733672.0788$-$2733672.0788
Y$_{C}$(m)5121154.10445121154.10445121154.10445121154.1044
Z$_{C}$(m)2633528.70102633528.70102633528.70102633528.7010
Calculated coordinate118$^{\circ}$05.587'E,118$^{\circ}$05.586'E,118$^{\circ}$05.583'E,118$^{\circ}$05.580'E,
24$^{\circ}$32.774'N24$^{\circ}$32.775'N24$^{\circ}$32.773'N24$^{\circ}$32.776'N
Actual coordinate118$^{\circ}$05.594'E,118$^{\circ}$05.480'E,118$^{\circ}$05.427'E,118$^{\circ}$05.459'E,
24$^{\circ}$32.798'N24$^{\circ}$32.676'N24$^{\circ}$32.669'N24$^{\circ}$32.690'N
ErrorLongitude/'0.0070.1060.1560.121
Latitude/'0.0240.0990.1040.086
TargetShip 5Ship 6Ship 7Ship 8
Algorithm parameters$\Phi (^{\circ})$21242525
$\omega (^{\circ})$$-$1$-$1$-$1$-$1
$\kappa (^{\circ})$0.20.20.20.2
x(mm)$-$7$-$9$-$11$-$2
y(mm)$-$12$-$11$-$5$-$5
f(mm)166155155126.6
X$_{C}$(m)$-$2733672.0788$-$2733672.0788$-$2733672.0788$-$2733672.0788
Y$_{C}$(m)5121154.10445121154.10445121154.10445121154.1044
Z$_{C}$(m)2633528.70102633528.70102633528.70102633528.7010
Calculated coordinate118$^{\circ}$05.587'E,118$^{\circ}$05.586'E,118$^{\circ}$05.583'E,118$^{\circ}$05.580'E,
24$^{\circ}$32.774'N24$^{\circ}$32.775'N24$^{\circ}$32.773'N24$^{\circ}$32.776'N
Actual coordinate118$^{\circ}$05.594'E,118$^{\circ}$05.480'E,118$^{\circ}$05.427'E,118$^{\circ}$05.459'E,
24$^{\circ}$32.798'N24$^{\circ}$32.676'N24$^{\circ}$32.669'N24$^{\circ}$32.690'N
ErrorLongitude/'0.0070.1060.1560.121
Latitude/'0.0240.0990.1040.086
[1]

Karol Mikula, Róbert Špir, Nadine Peyriéras. Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 953-967. doi: 10.3934/dcdss.2015.8.953

[2]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial & Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[3]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[4]

Mahadevan Ganesh, Brandon C. Reyes, Avi Purkayastha. An FEM-MLMC algorithm for a moving shutter diffraction in time stochastic model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 257-272. doi: 10.3934/dcdsb.2018107

[5]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[6]

Xiaoxiao Yuan, Jing Liu, Xingxing Hao. A moving block sequence-based evolutionary algorithm for resource investment project scheduling problems. Big Data & Information Analytics, 2017, 2 (1) : 39-58. doi: 10.3934/bdia.2017007

[7]

J. Delon, A. Desolneux, Jose-Luis Lisani, A. B. Petro. Automatic color palette. Inverse Problems & Imaging, 2007, 1 (2) : 265-287. doi: 10.3934/ipi.2007.1.265

[8]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[9]

Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178

[10]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[11]

L. Igual, J. Preciozzi, L. Garrido, A. Almansa, V. Caselles, B. Rougé. Automatic low baseline stereo in urban areas. Inverse Problems & Imaging, 2007, 1 (2) : 319-348. doi: 10.3934/ipi.2007.1.319

[12]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[13]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[14]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[15]

Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229

[16]

Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007

[17]

Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301

[18]

Chao Zhang, Jingjing Wang, Naihua Xiu. Robust and sparse portfolio model for index tracking. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018082

[19]

Simone Göttlich, Camill Harter. A weakly coupled model of differential equations for thief tracking. Networks & Heterogeneous Media, 2016, 11 (3) : 447-469. doi: 10.3934/nhm.2016004

[20]

Yingjie Li, Xiaoguang Yang, Shushang Zhu, Dong-Hui Li. A hybrid approach for index tracking with practical constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 905-927. doi: 10.3934/jimo.2014.10.905

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]