doi: 10.3934/dcdss.2019083

Research on iterative repair algorithm of Hyperchaotic image based on support vector machine

1. 

College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. 

Department of Computer Science, Winona State University, Winona, MN 55987, USA

* Corresponding author: Xin Li

Received  August 2017 Revised  December 2017 Published  November 2018

The damaged area of the hyperchaotic image is prone to lack of texture information. It needs to make image restoration design to improve the information expression ability of the image. In this paper, an iterative restoration algorithm of hyperchaotic image based on support vector machine is proposed. The sample blocks in the damaged region of hyperchaotic images are divided into smooth mesh structures according to block segmentation method, and the neighborhood pixels of which points need to repair are ranked efficiently according to gradient values. According to the edge fuzzification features, the position of the important structural information of the damaged area is located. A multi-dimensional spectral peak search method is applied to construct the information feature subspace of image texture, so as to find the best matching block for restoring the damaged region of hyperchaotic image. Considering the features of structural information and texture information, the maximum likelihood algorithm is used to reconstruct the pixel elements in the image region by piecewise fitting. Through the support vector machine algorithm, the image iterative restoration is carried out. The simulation results show that the restoration method for hyperchaotic image can achieve effective restoration of image damaged area, the quality of restorationed image is better, and the computation speed is fast. The image restoration method can effectively ensure the visual effect of the reconstructed image.

Citation: Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019083
References:
[1]

E. AbiriZ. Bezareh and A. Darabi, The optimum design of ram cell based on the modified-gdi method using non-dominated sorting genetic algorithm ⅱ (nsga-ⅱ), Journal of Intelligent & Fuzzy Systems, 32 (2017), 4095-4108.

[2]

S. Asawasamrit and C. Promsakon, On quasi-commutative kk-algebra, Journal of Discrete Mathematical Sciences & Cryptography, 19 (2016), 385-395. doi: 10.1080/09720529.2015.1102885.

[3]

M. N. A. Basheer Ahmad—Hugerat, The effectiveness of teachers' use of demonstrations for enhancing students' understanding of and attitudes to learning the oxidation-reduction concept, Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 555-570.

[4]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.

[5]

L. CaiH. ZhaiL. Yang and X. Tian, Assets evaluation credibility method based on the interpersonal relationship model, Journal of Interdisciplinary Mathematics, 20 (2017), 1047-1058.

[6]

J. ChenZ. H. YuanC. Yuan-Bo and S. O. Automation, Control method design of aircraft stability, Computer Simulation, 34 (2017), 39-43.

[7]

L. Chen and F. Zhao, Application of local binary pattern weighting algorithm in face recognition based on support vector machine, Bulletin of Science & Technology, 237-240.

[8]

Y. ChenY. ZhouX. Wang and L. Guo, Video information hiding algorithm based on diamond coding, Journal of Computer Applications, 37 (2017), 2806-2812.

[9]

A. Criminisi, P. Perez and K. Toyama, Object Removal by Exemplar-Based Image Inpainting, Zunic J, Computer Vision and Pattern Recognition, Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Wisconsin: IEEE Computer Society, 2003.

[10]

P. FerraraT. BianchiA. D. Rosa and A. Piva, Image forgery localization via fine-grained analysis of cfa artifacts, IEEE Transactions on Information Forensics & Security, 7 (2012), 1566-1577.

[11]

Y. HuangZ. WuL. Wang and T. Tan, Feature coding in image classification: A comprehensive study., IEEE Transactions on Pattern Analysis & Machine Intelligence, 36 (2014), 493-506.

[12]

M. A. Jian-Hong and J. I. Li-Xia, Study on agent immune network monitoring system model, Computer Simulation, 30 (2013), 213-216.

[13]

T. H. Kwok, H. Sheung and C. C. L. Wang, Fast Query for Exemplar-Based Image Completion, vol. 19, IEEE Press, 2010. doi: 10.1109/TIP.2010.2052270.

[14]

L. LeiP. C. WeiL. I. Li and S. Yin, Fast image encryption algorithm based on a second secret key, Science Technology & Engineering, 16 (2016), 259-263.

[15]

T. LiX. HeQ. Teng and X. Wu, Adaptive bi-lp-l2-norm based blind super-resolution reconstruction for single blurred image, Journal of Computer Applications, 37 (2016), 2313-2318.

[16]

L. I. Liu-Qing and Z. L. Chen, Risk early warning of stampedes based on visual image, Computer Simulation, 32 (2015), 429-432.

[17]

T. LongW. JiaoG. He and W. Wang, Automatic line segment registration using gaussian mixture model and expectation-maximization algorithm, IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7 (2014), 1688-1699.

[18]

S. LyuX. Pan and X. Zhang, Exposing region splicing forgeries with blind local noise estimation, International Journal of Computer Vision, 110 (2014), 202-221.

[19]

H. QinH. ZhaoH. Zhao and C. N. University, Research on the digital image encryption algorithm based on double chaos, Bulletin of Science & Technology, 32 (2016), 169-173.

[20]

Z. Q. SongY. F. LongK. Wang and T. S. Department, Modeling and performance research on hysteresis system basing on svm, Computer Simulation, 32 (2015), 398-402.

[21]

Z. SunZ. X. WangM. Bai and J. S. Zhang, Image inpainting method based on self-organizing maps and k-means clustering, Science Technology & Engineering, 12 (2012), 1790-1794.

[22]

R. C. TanT. LeiQ. M. ZhaoL. H. Gong and Z. H. Zhou, Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform, International Journal of Theoretical Physics, 55 (2016), 1-17.

[23]

X. Tang, Spectral analysis of a class of symmetric differential operators with logarithmic coefficients, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 91-102.

[24]

J. WangZ. Lei and G. Chen, A parameter optimization method for an svm based on improved grid search algorithm, Applied Science & Technology, 24 (2012), 231-233.

[25]

X. Wang and H. L. Zhang, A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems, Nonlinear Dynamics, 83 (2016), 333-346. doi: 10.1007/s11071-015-2330-8.

[26]

Y. Wei, Assessment study on brain wave predictive ability to policemena??s safety law enforcement, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 193-204.

[27]

A. Wong and J. Orchard, A nonlocal-means approach to exemplar-based inpainting, in IEEE International Conference on Image Processing, 2008, 2600-2603.

[28]

Z. Xu and J. Sun, Image inpainting by patch propagation using patch sparsity, IEEE Trans. Image Process, 19 (2010), 1153-1165. doi: 10.1109/TIP.2010.2042098.

[29]

L. Zhang and T. Z. Qiao, An binary segmentation algorithm for infrared image, Infrared Technology, 36 (2014), 649-651.

[30]

Y. Zhao and M. Li, A modified fuzzy c-means algorithm for segmentation of mri, in International Conference on Computational Intelligence and Multimedia Applications, 2003. Iccima 2003. Proceedings, 32 (2003), 146-149.

[31]

Y. ZhouL. Li and K. Xia, Research on weighted priority of exemplar-based image inpainting, Journal of Electronics(China), 29 (2012), 166-170.

[32]

H. Zhu, X. Zhang, H. Yu and et al., An image encryption algorithm based on compound homogeneous hyper-chaotic system, Nonlinear Dynamics, 89 (2017), 61-79.

show all references

References:
[1]

E. AbiriZ. Bezareh and A. Darabi, The optimum design of ram cell based on the modified-gdi method using non-dominated sorting genetic algorithm ⅱ (nsga-ⅱ), Journal of Intelligent & Fuzzy Systems, 32 (2017), 4095-4108.

[2]

S. Asawasamrit and C. Promsakon, On quasi-commutative kk-algebra, Journal of Discrete Mathematical Sciences & Cryptography, 19 (2016), 385-395. doi: 10.1080/09720529.2015.1102885.

[3]

M. N. A. Basheer Ahmad—Hugerat, The effectiveness of teachers' use of demonstrations for enhancing students' understanding of and attitudes to learning the oxidation-reduction concept, Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 555-570.

[4]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.

[5]

L. CaiH. ZhaiL. Yang and X. Tian, Assets evaluation credibility method based on the interpersonal relationship model, Journal of Interdisciplinary Mathematics, 20 (2017), 1047-1058.

[6]

J. ChenZ. H. YuanC. Yuan-Bo and S. O. Automation, Control method design of aircraft stability, Computer Simulation, 34 (2017), 39-43.

[7]

L. Chen and F. Zhao, Application of local binary pattern weighting algorithm in face recognition based on support vector machine, Bulletin of Science & Technology, 237-240.

[8]

Y. ChenY. ZhouX. Wang and L. Guo, Video information hiding algorithm based on diamond coding, Journal of Computer Applications, 37 (2017), 2806-2812.

[9]

A. Criminisi, P. Perez and K. Toyama, Object Removal by Exemplar-Based Image Inpainting, Zunic J, Computer Vision and Pattern Recognition, Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Wisconsin: IEEE Computer Society, 2003.

[10]

P. FerraraT. BianchiA. D. Rosa and A. Piva, Image forgery localization via fine-grained analysis of cfa artifacts, IEEE Transactions on Information Forensics & Security, 7 (2012), 1566-1577.

[11]

Y. HuangZ. WuL. Wang and T. Tan, Feature coding in image classification: A comprehensive study., IEEE Transactions on Pattern Analysis & Machine Intelligence, 36 (2014), 493-506.

[12]

M. A. Jian-Hong and J. I. Li-Xia, Study on agent immune network monitoring system model, Computer Simulation, 30 (2013), 213-216.

[13]

T. H. Kwok, H. Sheung and C. C. L. Wang, Fast Query for Exemplar-Based Image Completion, vol. 19, IEEE Press, 2010. doi: 10.1109/TIP.2010.2052270.

[14]

L. LeiP. C. WeiL. I. Li and S. Yin, Fast image encryption algorithm based on a second secret key, Science Technology & Engineering, 16 (2016), 259-263.

[15]

T. LiX. HeQ. Teng and X. Wu, Adaptive bi-lp-l2-norm based blind super-resolution reconstruction for single blurred image, Journal of Computer Applications, 37 (2016), 2313-2318.

[16]

L. I. Liu-Qing and Z. L. Chen, Risk early warning of stampedes based on visual image, Computer Simulation, 32 (2015), 429-432.

[17]

T. LongW. JiaoG. He and W. Wang, Automatic line segment registration using gaussian mixture model and expectation-maximization algorithm, IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7 (2014), 1688-1699.

[18]

S. LyuX. Pan and X. Zhang, Exposing region splicing forgeries with blind local noise estimation, International Journal of Computer Vision, 110 (2014), 202-221.

[19]

H. QinH. ZhaoH. Zhao and C. N. University, Research on the digital image encryption algorithm based on double chaos, Bulletin of Science & Technology, 32 (2016), 169-173.

[20]

Z. Q. SongY. F. LongK. Wang and T. S. Department, Modeling and performance research on hysteresis system basing on svm, Computer Simulation, 32 (2015), 398-402.

[21]

Z. SunZ. X. WangM. Bai and J. S. Zhang, Image inpainting method based on self-organizing maps and k-means clustering, Science Technology & Engineering, 12 (2012), 1790-1794.

[22]

R. C. TanT. LeiQ. M. ZhaoL. H. Gong and Z. H. Zhou, Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform, International Journal of Theoretical Physics, 55 (2016), 1-17.

[23]

X. Tang, Spectral analysis of a class of symmetric differential operators with logarithmic coefficients, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 91-102.

[24]

J. WangZ. Lei and G. Chen, A parameter optimization method for an svm based on improved grid search algorithm, Applied Science & Technology, 24 (2012), 231-233.

[25]

X. Wang and H. L. Zhang, A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems, Nonlinear Dynamics, 83 (2016), 333-346. doi: 10.1007/s11071-015-2330-8.

[26]

Y. Wei, Assessment study on brain wave predictive ability to policemena??s safety law enforcement, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 193-204.

[27]

A. Wong and J. Orchard, A nonlocal-means approach to exemplar-based inpainting, in IEEE International Conference on Image Processing, 2008, 2600-2603.

[28]

Z. Xu and J. Sun, Image inpainting by patch propagation using patch sparsity, IEEE Trans. Image Process, 19 (2010), 1153-1165. doi: 10.1109/TIP.2010.2042098.

[29]

L. Zhang and T. Z. Qiao, An binary segmentation algorithm for infrared image, Infrared Technology, 36 (2014), 649-651.

[30]

Y. Zhao and M. Li, A modified fuzzy c-means algorithm for segmentation of mri, in International Conference on Computational Intelligence and Multimedia Applications, 2003. Iccima 2003. Proceedings, 32 (2003), 146-149.

[31]

Y. ZhouL. Li and K. Xia, Research on weighted priority of exemplar-based image inpainting, Journal of Electronics(China), 29 (2012), 166-170.

[32]

H. Zhu, X. Zhang, H. Yu and et al., An image encryption algorithm based on compound homogeneous hyper-chaotic system, Nonlinear Dynamics, 89 (2017), 61-79.

Figure 1.  The principle diagram of block segmentation of hyperchaotic image
Figure 2.  Comparison of image "Cow" restoration effect
Figure 3.  Comparison of image "Rabbit" restoration effect
Figure 4.  Comparison of image "Golf" restoration effect
Figure 5.  Comparison of image "Wall" restoration effect
Figure 6.  Comparison of image "Stripes" restoration effect
Table 1.  Comparison of experiment data in the first group
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$ V(\%)$
Cow($512\times 384$) 209.656 22.564 1545.233 21.544 8.24 $\uparrow 3.54$
Rabbit($402\times 336)$ 20.53 33.241 174.324 33.232 8.35 $\uparrow 1.56$
Golf($262\times 350)$ 12.234 30.665 85.245 30.344 7.02 $\downarrow 0.57$
Wall($190\times 186)$ 6.323 28.543 46.314 30.454 7.34 $\downarrow 5.96$
Stripes($176\times 155)$ 2.453 42.032 16.543 43.445 6.64 $\downarrow 3.76$
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$ V(\%)$
Cow($512\times 384$) 209.656 22.564 1545.233 21.544 8.24 $\uparrow 3.54$
Rabbit($402\times 336)$ 20.53 33.241 174.324 33.232 8.35 $\uparrow 1.56$
Golf($262\times 350)$ 12.234 30.665 85.245 30.344 7.02 $\downarrow 0.57$
Wall($190\times 186)$ 6.323 28.543 46.314 30.454 7.34 $\downarrow 5.96$
Stripes($176\times 155)$ 2.453 42.032 16.543 43.445 6.64 $\downarrow 3.76$
Table 2.  Comparison of experiment data in the second group
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$V(\%)$
Cow($512\times 384)$ 142.354 22.545 1655.221 21.444 11.85 $\uparrow 1.24$
Rabbit($402\times 336)$ 15.545 32.740 157.545 33.464 11.55 $\downarrow 1.45$
Golf($262\times 350)$ 7.344 30.469 85.565 30.443 11.45 $\uparrow 0.51$
Wall($190\times 186)$ 4.455 30.908 46.877 30.356 9.56 $\downarrow 0.56$
Stripes($176\times 155)$ 1.666 41.876 16.54 43.676 9.65 $\downarrow 4.93$
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$V(\%)$
Cow($512\times 384)$ 142.354 22.545 1655.221 21.444 11.85 $\uparrow 1.24$
Rabbit($402\times 336)$ 15.545 32.740 157.545 33.464 11.55 $\downarrow 1.45$
Golf($262\times 350)$ 7.344 30.469 85.565 30.443 11.45 $\uparrow 0.51$
Wall($190\times 186)$ 4.455 30.908 46.877 30.356 9.56 $\downarrow 0.56$
Stripes($176\times 155)$ 1.666 41.876 16.54 43.676 9.65 $\downarrow 4.93$
Table 3.  Comparison of experiment data in the third group
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$V(\%)$
Cow($512\times 384)$ 109.464 22.454 1232.243 22.976 11.63 $\uparrow 1.12$
Rabbit($402\times 336)$ 13.045 31.554 163.465 32.566 12.34 $\downarrow 2.67$
Golf($262\times 350)$ 6.454 30.464 81.354 30.654 13.43 $\uparrow 0.34$
Wall($190\times 186)$ 3.833 28.578 40.456 28.533 10.46 $\downarrow 0.45$
Stripes($176\times 155)$ 1.354 40.665 15.566 43.355 9.76 $\downarrow 5.45$
SVM iterative restoration algorithm Criminisi algorithm
Image data set Computing time
$T1$(S)
The signal to noise ratio of the restored image:
V($dB$)
Computing time
$T2$(S)
The signal to noise ratio of the restored image:
V($dB$)
Ratio of restoration restoration time
$R = T2/T1$
Comparison of signal-to-noise ratio:
$(U-V)/$
$V(\%)$
Cow($512\times 384)$ 109.464 22.454 1232.243 22.976 11.63 $\uparrow 1.12$
Rabbit($402\times 336)$ 13.045 31.554 163.465 32.566 12.34 $\downarrow 2.67$
Golf($262\times 350)$ 6.454 30.464 81.354 30.654 13.43 $\uparrow 0.34$
Wall($190\times 186)$ 3.833 28.578 40.456 28.533 10.46 $\downarrow 0.45$
Stripes($176\times 155)$ 1.354 40.665 15.566 43.355 9.76 $\downarrow 5.45$
[1]

Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems & Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661

[2]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems & Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

[3]

Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial & Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529

[4]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial & Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[5]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

[6]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[7]

Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems & Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337

[8]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[9]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[10]

Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial & Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357

[11]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[12]

Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems & Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835

[13]

C. M. Elliott, B. Gawron, S. Maier-Paape, E. S. Van Vleck. Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration. Communications on Pure & Applied Analysis, 2006, 5 (1) : 181-200. doi: 10.3934/cpaa.2006.5.181

[14]

Jia Li, Zuowei Shen, Rujie Yin, Xiaoqun Zhang. A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise. Inverse Problems & Imaging, 2015, 9 (3) : 875-894. doi: 10.3934/ipi.2015.9.875

[15]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[16]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems & Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[17]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[18]

Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems & Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593

[19]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089

[20]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (8)
  • HTML views (58)
  • Cited by (0)

[Back to Top]