# American Institute of Mathematical Sciences

August & September  2019, 12(4&5): 1179-1185. doi: 10.3934/dcdss.2019081

## Vulnerability of super connected split graphs and bisplit graphs

 1 School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China 2 School of Science, Jimei University, Xiamen, Fujian 361021, China

* Corresponding author: Bernard L. S. Lin

Received  July 2017 Revised  January 2018 Published  November 2018

A graph $G = (C, I, E)$ is called a split graph if its vertex set $V$ can be partitioned into a clique $C$ and an independent set $I$. A graph $G = (Y \cup Z, I, E)$ is called a bisplit graph if its vertex set $V$ can be partitioned into three stable sets $I, Y,Z$ such that $Y \cup Z$ induces a complete bipartite graph and an independent set $I$. A connected graph $G$ is called supper-$κ$ (resp. super-$λ$) if every minimum vertex cut (edge cut) of $G$ is the set of neighbors of some vertex (the edges of incident to some vertex) in $G$. In this note, we show that: split graphs and bisplit graphs are super-$κ$ and super-$λ$.

Citation: Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081
##### References:
 [1] J. A. Bondy and U. S. R. Murty, Graph Theory and Its Application, Academic Press, New York, 1976. Google Scholar [2] A. Brandstät, P. L. Hammer, V. B. Le and V. V. Lozin, Bisplit graphs, Discrete Math., 299 (2005), 11-32. doi: 10.1016/j.disc.2004.08.046. Google Scholar [3] S. Födes and P. L. Hammer, Split graphs, Congr. Numer., 1 (1977), 311-315. Google Scholar [4] L. T. Guo, C. Qin and X. F. Guo, Super connectivity of Kronecker products of graphs, Information Processing Letters, 110 (2010), 659-661. doi: 10.1016/j.ipl.2010.05.013. Google Scholar [5] L. T. Guo, W. Yang and X., F. Guo, Super-connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters, 26 (2013), 120-123. doi: 10.1016/j.aml.2012.04.006. Google Scholar [6] M. Metsidik and E. Vumar, Edge vulnerability parameters of bisplit graphs, Computers and Mathematics with Applications, 56 (2008), 1741-1747. doi: 10.1016/j.camwa.2008.04.015. Google Scholar [7] G. J. Woeginger, The toughness of split graphs, Discrete Math., 190 (1998), 295-297. doi: 10.1016/S0012-365X(98)00156-3. Google Scholar [8] S. Zhang, Q. Zhang and H. Yang, Vulnerability parameters of split graphs, Int. J. Comput. Math., 85 (2008), 19-23. doi: 10.1080/00207160701365721. Google Scholar [9] Q. Zhang and S. Zhang, Edge vulnerability parameters of split graphs, Applied Mathematics Letters, 19 (2006), 916-920. doi: 10.1016/j.aml.2005.09.011. Google Scholar

show all references

##### References:
 [1] J. A. Bondy and U. S. R. Murty, Graph Theory and Its Application, Academic Press, New York, 1976. Google Scholar [2] A. Brandstät, P. L. Hammer, V. B. Le and V. V. Lozin, Bisplit graphs, Discrete Math., 299 (2005), 11-32. doi: 10.1016/j.disc.2004.08.046. Google Scholar [3] S. Födes and P. L. Hammer, Split graphs, Congr. Numer., 1 (1977), 311-315. Google Scholar [4] L. T. Guo, C. Qin and X. F. Guo, Super connectivity of Kronecker products of graphs, Information Processing Letters, 110 (2010), 659-661. doi: 10.1016/j.ipl.2010.05.013. Google Scholar [5] L. T. Guo, W. Yang and X., F. Guo, Super-connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters, 26 (2013), 120-123. doi: 10.1016/j.aml.2012.04.006. Google Scholar [6] M. Metsidik and E. Vumar, Edge vulnerability parameters of bisplit graphs, Computers and Mathematics with Applications, 56 (2008), 1741-1747. doi: 10.1016/j.camwa.2008.04.015. Google Scholar [7] G. J. Woeginger, The toughness of split graphs, Discrete Math., 190 (1998), 295-297. doi: 10.1016/S0012-365X(98)00156-3. Google Scholar [8] S. Zhang, Q. Zhang and H. Yang, Vulnerability parameters of split graphs, Int. J. Comput. Math., 85 (2008), 19-23. doi: 10.1080/00207160701365721. Google Scholar [9] Q. Zhang and S. Zhang, Edge vulnerability parameters of split graphs, Applied Mathematics Letters, 19 (2006), 916-920. doi: 10.1016/j.aml.2005.09.011. Google Scholar
$G$ is not super-$\kappa$
$G$ is not super-$\lambda$
$G$ is not super-$\lambda$
shuttle graph
 [1] Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial & Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074 [2] Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102 [3] Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153 [4] Shuangliang Tian, Ping Chen, Yabin Shao, Qian Wang. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 49-58. doi: 10.3934/naco.2014.4.49 [5] David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97-114. doi: 10.3934/amc.2009.3.97 [6] Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 [7] Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211 [8] Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131 [9] Cristina M. Ballantine. Ramanujan type graphs and bigraphs. Conference Publications, 2003, 2003 (Special) : 78-82. doi: 10.3934/proc.2003.2003.78 [10] Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167 [11] Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 [12] A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747 [13] Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93 [14] Renato Iturriaga, Héctor Sánchez Morgado. The Lax-Oleinik semigroup on graphs. Networks & Heterogeneous Media, 2017, 12 (4) : 643-662. doi: 10.3934/nhm.2017026 [15] Thomas Zaslavsky. Quasigroup associativity and biased expansion graphs. Electronic Research Announcements, 2006, 12: 13-18. [16] Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926 [17] Alain Bensoussan, Jens Frehse. On diagonal elliptic and parabolic systems with super-quadratic Hamiltonians. Communications on Pure & Applied Analysis, 2009, 8 (1) : 83-94. doi: 10.3934/cpaa.2009.8.83 [18] Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589 [19] Wenxiong Chen, Congming Li. Super polyharmonic property of solutions for PDE systems and its applications. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2497-2514. doi: 10.3934/cpaa.2013.12.2497 [20] Xumin Gu. Global wellposedness for a transport equation with super-critial dissipation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 653-665. doi: 10.3934/cpaa.2011.10.653

2018 Impact Factor: 0.545