doi: 10.3934/dcdss.2019069

Enterprise inefficient investment behavior analysis based on regression analysis

1. 

Dalian Maritime University, Dalian 116025, China

2. 

Dalian Commodity Exchange, Dalian 116023, China

* Corresponding author: Wei Li

Received  September 2017 Revised  January 2018 Published  November 2018

Inefficient investment will affect enterprise's survival and long-term development, and ultimately lead to the decline in corporate value. In order to promote the efficiency of the enterprise investment, in this paper, we aim to effectively analyze enterprise inefficient investment behavior, which has great significance in both enterprise management and social resources allocation. Firstly, we propose and analyze some typical enterprise investment theories, such as 1) MM enterprise investment theory, 2) Jorgensen investment theory, and 3) Tobin's q theory. Secondly, we propose a novel enterprise inefficient investment behavior analysis method based on regression analysis. Finally, to demonstrate the effectiveness of the proposed method, we conduct a series of experiments based on the CCER database. Experimental results show that the economy fluctuates across states due to the aggregate cash-flow shock driving the level of aggregate liquidity. Furthermore, we also can see that the particular sample path starts with a series of positive shocks, which can increase the capital value and decrease the cash value.

Citation: Wei Li, Yun Teng. Enterprise inefficient investment behavior analysis based on regression analysis. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019069
References:
[1]

S. N. AwondoE. G. Fonsah and D. J. Gray, Incorporating structure and stochasticity in muscadine grape enterprise budget and investment analysis, Horttechnology, 27 (2017), 212-222.

[2]

S. S. Chen and I. J. Chen, Ineficient investment and the diversification discount: evidence from corporate asset purchases, Journal of Business Finance & Accounting, 38 (2011), 887-891.

[3]

J. N. CooperD. L. LodwickB. AdlerC. LeeP. C. Minneci and K. J. Deans, Patient characteristics associated with differences in radiation exposure from pediatric abdomen-pelvis CT scans: A quantile regression analysis, Computers in Biology and Medicine, 85 (2017), 7-12.

[4]

J. J. Cordes, Using cost-benefit analysis and social return on investment to evaluate the impact of social enterprise: Promises, implementation, and limitations, Evaluation and Program Planning, 64 (2017), 98-104.

[5]

W. Dobson and s China, State-owned enterprises and canada s foreign direct investment policy, Canadian Public Policy-Analyse De Politiques, 43 (2017), S29-S44.

[6]

C. FumagalliM. Motta and T. Ronde, Exclusive dealing: Investment promotion may facil-itate inefficient foreclosure, Journal of Industrial Economics, 60 (2012), 599-608.

[7]

O. Hart and L. Zingales, Liquidity and inefficient investment, Journal of the European Eco-nomic Association, 13 (2015), 737-769.

[8]

Z. G. He and P. Kondor, Inefficient investment waves, Econometrica, 84 (2016), 735-780. doi: 10.3982/ECTA11788.

[9]

C. W. HsuJ. H. WangY. H. Kung and M. C. Chang, What is the predictor of surgical mor-tality in adult colorectal perforation?, The Clinical Characteristics and Results of a Multivariate Logistic Regression Analysis, Surgery Today, 47 (2017), 683-689.

[10]

X. Y. JiH. YeJ. X. Zhou and W. L. Deng, Digital management technology and its appli-cation to investment casting enterprises, China Foundry, 13 (2016), 301-309.

[11]

S. W. LiT. HuP. J. Wang and J. G. Sun, Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments, Computa-tional Statistics & Data Analysis, 110 (2017), 75-86. doi: 10.1016/j.csda.2016.12.011.

[12]

Y. LiuC. McMahan and C. Gallagher, A general framework for the regression analysis of pooled biomarker assessments, Statistics in Medicine, 36 (2017), 2363-2377. doi: 10.1002/sim.7291.

[13]

M. MainouA. V. MadenidouA. LiakosP. PaschosT. KaragiannisE. BekiariE. VlachakiZ. WangM. H. MuradS. Kumar and A. Tsapas, Association between response rates and survival outcomes in patients with newly diagnosed multiple myeloma, A systematic review and meta-regression analysis, European Journal of Haematology, 98 (2017), 563-568.

[14]

N. Matthews and S. Motta, Chinese state-owned enterprise investment in mekong Hy-dropower: Political and economic drivers and their implications across the water, Energy, Food Nexus, Water, 7 (2015), 6269-6284.

[15]

R. MeisterA. JansenM. HarterY. Nestoriuc and L. Kriston, Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder, A Meta-Regression Analysis, Journal of Affective Disorders, 215 (2017), 288-298.

[16]

A. Olaya-AbrilL. Parras-AlcantaraB. Lozano-Garcia and R. Obregon-Romero, Soil organic carbon distribution in Mediterranean areas under a climate change scenario via multiple linear regression analysis, Science of the Total Environment, 592 (2017), 134-143.

[17]

D. PhungD. ConnellS. Rutherford and C. Chu, Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment, Chemosphere, 177 (2017), 167-175.

[18]

X. H. QuZ. J. LiuY. L. WangY. FangM. Y. Du and H. He, Dentofacial traits in association with lower incisor alveolar cancellous bone thickness: A multiple regression analysis, Angle Orthodontist, 87 (2017), 409-415.

[19]

R. RajanH. Servaes and L. Zingales, The cost of diversity: The diversification discount and inefficient investment, Journal of Finance, 55 (2000), 35-80.

[20]

G. A. RibaroffE. WastnedgeA. J. DrakeR. M. Sharpe and T. J. G. Chambers, Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis, Obesity Reviews, 18 (2017), 673-686.

[21]

D. S. Scharfstein and J. C. Stein, The dark side of internal capital markets: Divisional rent-seeking and inefficient investment, Journal of Finance, 55 (2000), 2537-2564.

[22]

S. H. Seog and Y. S. Baik, Inefficient investment, information asymmetry, and competition for managers, Journal of Public Economic Theory, 14 (2012), 971-995.

[23]

S. VermaM. E. NongpiurE. AtalayX. WeiR. HusainD. GohS. A. Perera and T. Aung, Visual field progression in patients with primary angle-closure glaucoma using pointwise linear regression analysis, Ophthalmology, 124 (2017), 1065-1071.

[24]

A. Voss, How disagreement about social costs leads to inefficient energy-productivity investment, Environmental & Resource Economics, 60 (2015), 521-548.

[25]

T. M. Whited, Is it inefficient investment that causes the diversification discount?, Journal of Finance, 56 (2001), 1667-1691.

[26]

X. YeY. M. KangB. Zuo and K. Zhong, Study of factors affecting warm air spreading distance in impinging jet ventilation rooms using multiple regression analysis, Building and Environment, 120 (2017), 1-12.

[27]

B. YildizJ. I. Bilbao and A. B. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting, Renewable & Sustainable Energy Reviews, 73 (2017), 1104-1122.

[28]

R. S. YoonM. J. GageD. K. GalosD. J. Donegan and F. A. Liporace, Trochanteric entry femoral nails yield better femoral version and lower revision rates-A large cohort multivariate regression analysis, Injury-International Journal of the Care of the Injured, 48 (2017), 1165-1169.

[29]

G. L. YuL. ZhuY. LiJ. G. Sun and L. L. Robison, Regression analysis of mixed panel count data with dependent terminal events, Statistics in Medicine, 36 (2017), 1669-1680.

[30]

Y. F. ZhangM. ZhangY. Liu and R. Nie, Enterprise investment, Local Government Inter-Vention and Coal Overcapacity: The Case of China, Energy Policy, 101 (2017), 162-169.

show all references

References:
[1]

S. N. AwondoE. G. Fonsah and D. J. Gray, Incorporating structure and stochasticity in muscadine grape enterprise budget and investment analysis, Horttechnology, 27 (2017), 212-222.

[2]

S. S. Chen and I. J. Chen, Ineficient investment and the diversification discount: evidence from corporate asset purchases, Journal of Business Finance & Accounting, 38 (2011), 887-891.

[3]

J. N. CooperD. L. LodwickB. AdlerC. LeeP. C. Minneci and K. J. Deans, Patient characteristics associated with differences in radiation exposure from pediatric abdomen-pelvis CT scans: A quantile regression analysis, Computers in Biology and Medicine, 85 (2017), 7-12.

[4]

J. J. Cordes, Using cost-benefit analysis and social return on investment to evaluate the impact of social enterprise: Promises, implementation, and limitations, Evaluation and Program Planning, 64 (2017), 98-104.

[5]

W. Dobson and s China, State-owned enterprises and canada s foreign direct investment policy, Canadian Public Policy-Analyse De Politiques, 43 (2017), S29-S44.

[6]

C. FumagalliM. Motta and T. Ronde, Exclusive dealing: Investment promotion may facil-itate inefficient foreclosure, Journal of Industrial Economics, 60 (2012), 599-608.

[7]

O. Hart and L. Zingales, Liquidity and inefficient investment, Journal of the European Eco-nomic Association, 13 (2015), 737-769.

[8]

Z. G. He and P. Kondor, Inefficient investment waves, Econometrica, 84 (2016), 735-780. doi: 10.3982/ECTA11788.

[9]

C. W. HsuJ. H. WangY. H. Kung and M. C. Chang, What is the predictor of surgical mor-tality in adult colorectal perforation?, The Clinical Characteristics and Results of a Multivariate Logistic Regression Analysis, Surgery Today, 47 (2017), 683-689.

[10]

X. Y. JiH. YeJ. X. Zhou and W. L. Deng, Digital management technology and its appli-cation to investment casting enterprises, China Foundry, 13 (2016), 301-309.

[11]

S. W. LiT. HuP. J. Wang and J. G. Sun, Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments, Computa-tional Statistics & Data Analysis, 110 (2017), 75-86. doi: 10.1016/j.csda.2016.12.011.

[12]

Y. LiuC. McMahan and C. Gallagher, A general framework for the regression analysis of pooled biomarker assessments, Statistics in Medicine, 36 (2017), 2363-2377. doi: 10.1002/sim.7291.

[13]

M. MainouA. V. MadenidouA. LiakosP. PaschosT. KaragiannisE. BekiariE. VlachakiZ. WangM. H. MuradS. Kumar and A. Tsapas, Association between response rates and survival outcomes in patients with newly diagnosed multiple myeloma, A systematic review and meta-regression analysis, European Journal of Haematology, 98 (2017), 563-568.

[14]

N. Matthews and S. Motta, Chinese state-owned enterprise investment in mekong Hy-dropower: Political and economic drivers and their implications across the water, Energy, Food Nexus, Water, 7 (2015), 6269-6284.

[15]

R. MeisterA. JansenM. HarterY. Nestoriuc and L. Kriston, Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder, A Meta-Regression Analysis, Journal of Affective Disorders, 215 (2017), 288-298.

[16]

A. Olaya-AbrilL. Parras-AlcantaraB. Lozano-Garcia and R. Obregon-Romero, Soil organic carbon distribution in Mediterranean areas under a climate change scenario via multiple linear regression analysis, Science of the Total Environment, 592 (2017), 134-143.

[17]

D. PhungD. ConnellS. Rutherford and C. Chu, Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment, Chemosphere, 177 (2017), 167-175.

[18]

X. H. QuZ. J. LiuY. L. WangY. FangM. Y. Du and H. He, Dentofacial traits in association with lower incisor alveolar cancellous bone thickness: A multiple regression analysis, Angle Orthodontist, 87 (2017), 409-415.

[19]

R. RajanH. Servaes and L. Zingales, The cost of diversity: The diversification discount and inefficient investment, Journal of Finance, 55 (2000), 35-80.

[20]

G. A. RibaroffE. WastnedgeA. J. DrakeR. M. Sharpe and T. J. G. Chambers, Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis, Obesity Reviews, 18 (2017), 673-686.

[21]

D. S. Scharfstein and J. C. Stein, The dark side of internal capital markets: Divisional rent-seeking and inefficient investment, Journal of Finance, 55 (2000), 2537-2564.

[22]

S. H. Seog and Y. S. Baik, Inefficient investment, information asymmetry, and competition for managers, Journal of Public Economic Theory, 14 (2012), 971-995.

[23]

S. VermaM. E. NongpiurE. AtalayX. WeiR. HusainD. GohS. A. Perera and T. Aung, Visual field progression in patients with primary angle-closure glaucoma using pointwise linear regression analysis, Ophthalmology, 124 (2017), 1065-1071.

[24]

A. Voss, How disagreement about social costs leads to inefficient energy-productivity investment, Environmental & Resource Economics, 60 (2015), 521-548.

[25]

T. M. Whited, Is it inefficient investment that causes the diversification discount?, Journal of Finance, 56 (2001), 1667-1691.

[26]

X. YeY. M. KangB. Zuo and K. Zhong, Study of factors affecting warm air spreading distance in impinging jet ventilation rooms using multiple regression analysis, Building and Environment, 120 (2017), 1-12.

[27]

B. YildizJ. I. Bilbao and A. B. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting, Renewable & Sustainable Energy Reviews, 73 (2017), 1104-1122.

[28]

R. S. YoonM. J. GageD. K. GalosD. J. Donegan and F. A. Liporace, Trochanteric entry femoral nails yield better femoral version and lower revision rates-A large cohort multivariate regression analysis, Injury-International Journal of the Care of the Injured, 48 (2017), 1165-1169.

[29]

G. L. YuL. ZhuY. LiJ. G. Sun and L. L. Robison, Regression analysis of mixed panel count data with dependent terminal events, Statistics in Medicine, 36 (2017), 1669-1680.

[30]

Y. F. ZhangM. ZhangY. Liu and R. Nie, Enterprise investment, Local Government Inter-Vention and Coal Overcapacity: The Case of China, Energy Policy, 101 (2017), 162-169.

Figure 1.  Price of capital
Figure 2.  Marginal value of cash
Figure 3.  Marginal value of capital
Figure 4.  Cash to capital ratio
Table 1.  Descriptive statistic of different variabless
Variable Minimum Maximum Average Standard deviation
Age(t-1) 3 17 8.81 2.25
Size(t-1) 15.68 25.74 22.09 1.09
Growth(t-1) -1.17 185.21 0.485 5.17
Lev(t-1) 0.0077 54.27 0.963 2.08
TBQ(t-1) 0.0001 15.92 0.674 0.591
Cash(t-1) 0 0.854 0.257 0.126
Ret(t-1) -0.925 6.38 0.254 0.683
IVV1(t) 0 0.624 0.054 0.147
IVV1(t-1) 0 0.552 0.051 0.068
IVV2(t) -1.39 1.22 0.008 0.163
IVV2(t-1) -1.27 1.05 0.027 0.129
Variable Minimum Maximum Average Standard deviation
Age(t-1) 3 17 8.81 2.25
Size(t-1) 15.68 25.74 22.09 1.09
Growth(t-1) -1.17 185.21 0.485 5.17
Lev(t-1) 0.0077 54.27 0.963 2.08
TBQ(t-1) 0.0001 15.92 0.674 0.591
Cash(t-1) 0 0.854 0.257 0.126
Ret(t-1) -0.925 6.38 0.254 0.683
IVV1(t) 0 0.624 0.054 0.147
IVV1(t-1) 0 0.552 0.051 0.068
IVV2(t) -1.39 1.22 0.008 0.163
IVV2(t-1) -1.27 1.05 0.027 0.129
Table 2.  Regression results summarization
Variable IVV1(t) IVV1(t) IVV1(t) IVV2(t) IVV2(t)
Constant -0.072
(-2.134**)
-0.081
(-2.336**)
-0.080
(-2.317**)
-0.395
(-3.819**)
-0.386
(-3.742**)
$Age_{t-1} $ 6.954E-5
(0.115)
0.001
(0.782)
0.000
(0.659)
-0.001
(-0.581)
-0.021
(-0.883)
$Size_{t-1} $ 0.004
(0.115)
0.004
(0.782)
0.004
(0.659)
0.017
(-0.588)
0.017
(-0.883)
$Growth_{t-1} $ 0.000
(-0.415)
-9.78E-5
(-0.355)
0.000
(-0.372)
0.000
(0.463)
0.017
(-0.883)
$TBQ_{t-1} $ -0.011
(-1.968**)
-0.013
(-1.742**)
-0.014
(-1.696**)
-0.049
(-3.741)
-0.046
(-3.691)
$Lev_{t-1} $ 0.000
(-0.338)
0.000
(-0.416)
0.003
(1.524)
-0.002
(-0.957)
0.016
(-3.752***)
$Cash_{t-1} $ 0.052
(3.749***)
0.066
(4.125***)
0.064
(4.121***)
0.268
(3.654***)
0.165
(3.627***)
$Ret_{t-1} $ 0.005
(2.025***)
0.008
(1.028)
0.003
(1.114)
0.028
(3.457***)
0.028
(3.364***)
$IVV1_{t-1} $ 0.475
(19.965***)
0.472
(18.527***)
0.453
(18.508***)
$IVV2_{t-1} $ 0.136
(3.652***)
0.135
(3.827***)
$Adj-R2$ 0.258 0.274 0.283 0.097 0.106
$F\;value$ 73.85*** 27.71*** 28.54*** 7.96*** 8.72***
Variable IVV1(t) IVV1(t) IVV1(t) IVV2(t) IVV2(t)
Constant -0.072
(-2.134**)
-0.081
(-2.336**)
-0.080
(-2.317**)
-0.395
(-3.819**)
-0.386
(-3.742**)
$Age_{t-1} $ 6.954E-5
(0.115)
0.001
(0.782)
0.000
(0.659)
-0.001
(-0.581)
-0.021
(-0.883)
$Size_{t-1} $ 0.004
(0.115)
0.004
(0.782)
0.004
(0.659)
0.017
(-0.588)
0.017
(-0.883)
$Growth_{t-1} $ 0.000
(-0.415)
-9.78E-5
(-0.355)
0.000
(-0.372)
0.000
(0.463)
0.017
(-0.883)
$TBQ_{t-1} $ -0.011
(-1.968**)
-0.013
(-1.742**)
-0.014
(-1.696**)
-0.049
(-3.741)
-0.046
(-3.691)
$Lev_{t-1} $ 0.000
(-0.338)
0.000
(-0.416)
0.003
(1.524)
-0.002
(-0.957)
0.016
(-3.752***)
$Cash_{t-1} $ 0.052
(3.749***)
0.066
(4.125***)
0.064
(4.121***)
0.268
(3.654***)
0.165
(3.627***)
$Ret_{t-1} $ 0.005
(2.025***)
0.008
(1.028)
0.003
(1.114)
0.028
(3.457***)
0.028
(3.364***)
$IVV1_{t-1} $ 0.475
(19.965***)
0.472
(18.527***)
0.453
(18.508***)
$IVV2_{t-1} $ 0.136
(3.652***)
0.135
(3.827***)
$Adj-R2$ 0.258 0.274 0.283 0.097 0.106
$F\;value$ 73.85*** 27.71*** 28.54*** 7.96*** 8.72***
[1]

Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031

[2]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[3]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[4]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[5]

Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i

[6]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[7]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-24. doi: 10.3934/jimo.2018077

[8]

Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757

[9]

Jerzy A. Filar, Michael Haythorpe, Richard Taylor. Linearly-growing reductions of Karp's 21 NP-complete problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 1-16. doi: 10.3934/naco.2018001

[10]

Song Wang, Quanxi Shao, Xian Zhou. Knot-optimizing spline networks (KOSNETS) for nonparametric regression. Journal of Industrial & Management Optimization, 2008, 4 (1) : 33-52. doi: 10.3934/jimo.2008.4.33

[11]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[12]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[13]

Ming Yang, Chulin Li. Valuing investment project in competitive environment. Conference Publications, 2003, 2003 (Special) : 945-950. doi: 10.3934/proc.2003.2003.945

[14]

Adrien Nguyen Huu. Investment under uncertainty, competition and regulation. Journal of Dynamics & Games, 2014, 1 (4) : 579-598. doi: 10.3934/jdg.2014.1.579

[15]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[16]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[17]

Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial & Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743

[18]

Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069

[19]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[20]

Lei Sun, Lihong Zhang. Optimal consumption and investment under irrational beliefs. Journal of Industrial & Management Optimization, 2011, 7 (1) : 139-156. doi: 10.3934/jimo.2011.7.139

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]