doi: 10.3934/dcdss.2019068

Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials

1. 

Hubei Province Key Laboratory of Intelligent Robots, School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

2. 

Wuhan inCarCloud Technologies Pte.Ltd. China

3. 

Business School, Sichuan University, Chengdu, China

4. 

Wuhan Winphone Technology Co., Ltd, China

5. 

Chengdu University of Information Technology, Chengdu 610225, China

* Corresponding author: Shaofei Wu

Received  June 2017 Revised  November 2017 Published  November 2018

In this paper, we will study the uniform $L^1$ stability of the inelastic Boltzmann equation. More precisely, according to the existence result on the inelastic Boltzmann equation with external force near vacuum, we obtain the uniform $L^1$ stability estimates of mild solution for the hard potentials under the assumptions on the characteristic generated by force term which can be arbitrarily large. The proof is based on the exponentially decay estimate and Lu's trick in [10].

Citation: Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019068
References:
[1]

R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022. doi: 10.1512/iumj.2009.58.3506.

[2]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1988), 151-167. doi: 10.1007/BF00251506.

[3]

C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732. doi: 10.1016/j.jmaa.2008.11.027.

[4]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. Math., 130 (1989), 321-366. doi: 10.2307/1971423.

[5]

R. J. Duan, T. Yang and C. J. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum J. Math. Phys. 46 (2005), 053307, 13pp. doi: 10.1063/1.1899985.

[6]

R. J. DuanT. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differential Equations, 227 (2006), 1-28. doi: 10.1016/j.jde.2006.01.010.

[7]

S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Ration. Mech. Anal., 171 (2004), 279-296. doi: 10.1007/s00205-004-0321-x.

[8]

S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differential Equations, 215 (2005), 178-205. doi: 10.1016/j.jde.2004.07.022.

[9]

S. Y. Ha, $L^1$-stability of the Boltzmann equation for Maxwellian molecules, Nonlinearity, 18 (2005), 981-1001. doi: 10.1088/0951-7715/18/3/003.

[10]

X. Lu, Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174. doi: 10.1137/S0036141098334985.

[11]

J. B. Wei and X. W. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609. doi: 10.1007/s10955-011-0410-9.

[12]

J. B. Wei and X. W. Zhang, Infinite energy solutions of the inelastic Boltzmann equation with external force, Acta Mathematica Scientia, 32 (2012), 2131-2140. doi: 10.1016/S0252-9602(12)60165-9.

[13]

J. B. Weiand X. W. Zhang, On the inelastic Enskog equation with external force J. Math. Phy. 53 (2012), 103505, 12pp. doi: 10.1063/1.4753988.

[14]

B. Wennberg, Stability and exponential convergence in $L^p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Theory, Methods Appl., 20 (1993), 935-964. doi: 10.1016/0362-546X(93)90086-8.

[15]

Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn, 22 (2010), 239-249. doi: 10.1007/s00161-009-0127-z.

[16]

S. B. Yun, $L^p$ stability estimate of the Boltzmann equation around a traveling local Maxwellian, J. Differential Equations, 251 (2011), 45-57. doi: 10.1016/j.jde.2011.03.001.

show all references

References:
[1]

R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022. doi: 10.1512/iumj.2009.58.3506.

[2]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1988), 151-167. doi: 10.1007/BF00251506.

[3]

C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732. doi: 10.1016/j.jmaa.2008.11.027.

[4]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. Math., 130 (1989), 321-366. doi: 10.2307/1971423.

[5]

R. J. Duan, T. Yang and C. J. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum J. Math. Phys. 46 (2005), 053307, 13pp. doi: 10.1063/1.1899985.

[6]

R. J. DuanT. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differential Equations, 227 (2006), 1-28. doi: 10.1016/j.jde.2006.01.010.

[7]

S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Ration. Mech. Anal., 171 (2004), 279-296. doi: 10.1007/s00205-004-0321-x.

[8]

S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differential Equations, 215 (2005), 178-205. doi: 10.1016/j.jde.2004.07.022.

[9]

S. Y. Ha, $L^1$-stability of the Boltzmann equation for Maxwellian molecules, Nonlinearity, 18 (2005), 981-1001. doi: 10.1088/0951-7715/18/3/003.

[10]

X. Lu, Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174. doi: 10.1137/S0036141098334985.

[11]

J. B. Wei and X. W. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609. doi: 10.1007/s10955-011-0410-9.

[12]

J. B. Wei and X. W. Zhang, Infinite energy solutions of the inelastic Boltzmann equation with external force, Acta Mathematica Scientia, 32 (2012), 2131-2140. doi: 10.1016/S0252-9602(12)60165-9.

[13]

J. B. Weiand X. W. Zhang, On the inelastic Enskog equation with external force J. Math. Phy. 53 (2012), 103505, 12pp. doi: 10.1063/1.4753988.

[14]

B. Wennberg, Stability and exponential convergence in $L^p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Theory, Methods Appl., 20 (1993), 935-964. doi: 10.1016/0362-546X(93)90086-8.

[15]

Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn, 22 (2010), 239-249. doi: 10.1007/s00161-009-0127-z.

[16]

S. B. Yun, $L^p$ stability estimate of the Boltzmann equation around a traveling local Maxwellian, J. Differential Equations, 251 (2011), 45-57. doi: 10.1016/j.jde.2011.03.001.

[1]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[2]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[3]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[4]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[5]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[6]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[7]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[8]

Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic & Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755

[9]

Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic & Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669

[10]

Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090

[11]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

[12]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[13]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[14]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[15]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[16]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[17]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[18]

Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309

[19]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[20]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

2017 Impact Factor: 0.561

Article outline

[Back to Top]