# American Institute of Mathematical Sciences

August & September  2019, 12(4&5): 957-968. doi: 10.3934/dcdss.2019064

## Applications of mathematics to maritime search

 1 School of Computer and Computing, Zhejiang University City College, Hangzhou 310015, China 2 Department of investigation, Zhejiang Police College, Hangzhou 310053, China 3 School of Business, Zhejiang University City College, Hangzhou 310015, China 4 School of Business and Economics, Australian National University, Acton ACT 2061, Australia

* Corresponding author: Jinming Zhang

Received  October 2017 Revised  January 2018 Published  November 2018

The issue of searching missing aircraft is valuable after the event of MH370. This paper provides a global optimal model to foster the efficiency of maritime search. Firstly, the limited scope, a circle whose center is the last known position of the aircraft, should be estimated based on the historical data recorded before the disappearance of the aircraft. And Bayes' theorem is applied to calculate the probability that the plane falling in the region can be found. Secondly, the drift of aircraft debris under the influence of wind and current is considered via Finite Volume Community Ocean Model(FVCOM) and Monte Carlo Method(MC), which make the theory more reasonable. Finally, a global optimal model about vessel and aircraft quantitative constraints is established, which fully considers factors including the area of sea region to be searched, the maximum speed, search capabilities, initial distance of the vessels by introducing 0-1 decision variables.

Citation: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin, Zhike Han. Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-968. doi: 10.3934/dcdss.2019064
##### References:

show all references

##### References:
The bounding limit of aircraft in distress
Wind-induced drift component diagram
Ocean Surface Zonal Currents-Ocean Surface Meridional Currents(meter/sec)
Sketch of calculation process
Time taken by exhaustive method for optimal solution with quantitative constraint
 Problem size $n$ Number of package $S$ Number of package $t$ 30 $2^{30}$=1073741824 About 1s 50 $2^{50}$=1125899906842624 About 13 days 100 $2^{100}$ About $4\times{}10^{13}$ days
 Problem size $n$ Number of package $S$ Number of package $t$ 30 $2^{30}$=1073741824 About 1s 50 $2^{50}$=1125899906842624 About 13 days 100 $2^{100}$ About $4\times{}10^{13}$ days
Time taken by exhaustive method for optimal solution with quantitative constraint
 Problem size $n$ Number of package $S$ Computation time $t$ 30(20 ships, 10 planes) $\binom{20}{10}\cdot\binom{10}{5}=46558512$ About 0.05 s 50(40 ships, 10 planes) $\binom{40}{10}\cdot\binom{10}{5}=213610453056$ About 4 s 100(90 ships, 10 planes) $\binom{100}{10}\cdot\binom{10}{5}=1441602661439556$ About 400 hours
 Problem size $n$ Number of package $S$ Computation time $t$ 30(20 ships, 10 planes) $\binom{20}{10}\cdot\binom{10}{5}=46558512$ About 0.05 s 50(40 ships, 10 planes) $\binom{40}{10}\cdot\binom{10}{5}=213610453056$ About 4 s 100(90 ships, 10 planes) $\binom{100}{10}\cdot\binom{10}{5}=1441602661439556$ About 400 hours
 [1] Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 [2] Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024 [3] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 [4] Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913 [5] Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195 [6] Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 [7] Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152 [8] Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 [9] Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 [10] Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 [11] Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349 [12] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [13] Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems & Imaging, 2018, 12 (2) : 401-432. doi: 10.3934/ipi.2018018 [14] Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 [15] Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 [16] Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 [17] Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 [18] Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 [19] Yukie Goto, Danielle Hilhorst, Ehud Meron, Roger Temam. Existence theorem for a model of dryland vegetation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 197-224. doi: 10.3934/dcdsb.2011.16.197 [20] Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

2018 Impact Factor: 0.545