doi: 10.3934/dcdss.2019059

Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm

1. 

Modern Education Technology Center, Anhui Polytechnic University, Anhui Wuhu, 241000, China

2. 

School of Electrical Engineering, Anhui Polytechnic University, Anhui Wuhu, 241000, China

3. 

Modern Education Technology Center, School of Computer and Information Engineering, Anhui Wuhu, 241000, China

* Corresponding author: Xiaoguang Xu

Received  July 2017 Revised  November 2017 Published  November 2018

As a basic and fundamental problem in wireless sensor network (WSN), the network coverage greatly reflects the performance of information transmission in WSN. In order to achieve a good balance between target coverage and energy consumption, in this paper, we propose a novel wireless sensor network energy efficient coverage method based on genetic algorithm. Particularly, the goal of this work is cover a 2D sensing area via selecting a minimum number of sensors. Moreover, the deployed wireless sensors should be connected to let each sensor be connected a path to the base station. Afterwards, genetic algorithm is used to compute the minimum number of potential position to let all target be k-covered and all sensor nodes be m-connected, and each chromosome is set to be the number of potential positions. Finally, we provide a simulation to test the performance of the proposed method, and simulation results demonstrate that the proposed method can achieve high degree of target coverage without wasting extra energy.

Citation: Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019059
References:
[1]

A. A. Abbasi and M. Younis, A survey on clustering algorithms for wireless sensor networks, Computer Communications, 30 (2007), 2826-2841.

[2]

G. Ahmed and N. M. Khan, Adaptive power-control based energy-efficient routing in wireless sensor networks, Wireless Personal Communications, 94 (2017), 1297-1329.

[3]

I. F. AkyildizT. Melodia and K. R. Chowdhury, A survey on wireless multimedia sensor networks, Computer Networks, 51 (2007), 921-960.

[4]

I. F. AkyildizW. SuY. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: A survey, Computer Networks, 38 (2002), 393-422.

[5]

O. M. Alia and A. Al-Ajouri, Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm, Ieee Sensors Journal, 17 (2017), 882-896.

[6]

M. AlipioN. M. TiglaoA. GriloF. BokhariU. Chaudhry and S. Qureshi, Cache-based transport protocols in wireless sensor networks: A survey and future directions, Journal of Network and Computer Applications, 88 (2017), 29-49.

[7]

G. AnastasiC. MarcoM. Di Francesco and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad Hoc Networks, 7 (2009), 537-568.

[8]

N. A. AzizA. W. MohemmedM. Y. AliasK. Aziz and S. Syahali, Coverage maximization and energy conservation for mobile wireless sensor networks: A two phase particle swarm optimization algorithm, International Journal of Natural Computing Research, 3 (2012), 43-63.

[9]

M. BoudaliM. R. SenouciM. Aissani and W. K. Hidouci, Activities scheduling algorithms based on probabilistic coverage models for wireless sensor networks, Annals of Telecommunications, 72 (2017), 221-232.

[10]

A. BoudriesM. Amad and P. Siarry, Novel approach for replacement of a failure node in wireless sensor network, Telecommunication Systems, 65 (2017), 341-350.

[11]

K. Bouyahia and M. Benchaiba, CRVR: Connectivity Repairing in Wireless Sensor Networks with Void Regions, Journal of Network and Systems Management, 25 (2017), 536-557.

[12]

H. Hakli and H. Uguz, A novel approach for automated land partitioning using genetic algorithm, Expert Systems with Applications, 82 (2017), 10-18.

[13]

G. J. HanL. LiuJ. F. JiangL. Shu and G. Hancke, Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks, Ieee Transactions on Industrial Informatics, 13 (2017), 135-143.

[14]

S. KebirI. Borne and D. Meslati, A genetic algorithm-based approach for automated refactoring of component-based software, Information and Software Technology, 88 (2017), 17-36.

[15]

P. Martinez-CanadaC. MorillasH. E. PlesserS. Romero and F. Pelayo, Genetic algorithm for optimization of models of the early stages in the visual system, Neurocomputing, 250 (2017), 101-108.

[16]

A. Mehrabi and K. Kim, General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks, IEEE Transactions on Mobile Computing, 16 (2017), 1881-1896.

[17]

T. NguyenC. So-InN. Nguyen and S. Phoemphon, A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks, Peer-to-Peer Networking and Applications, 10 (2017), 519-536.

[18]

A. PananjadyV. K. Bagaria and R. Vaze, Optimally Approximating the Coverage Lifetime of Wireless Sensor Networks, IEEE-ACM Transactions on Networking, 25 (2017), 98-111.

[19]

D. Raposo, A. Rodrigues, J. S. Silva and F. Boavida, A Taxonomy of Faults for Wireless Sensor Networks, Journal of Network and Systems Management, 25 (2017), 591-611.

[20]

J. So and H. Byun, Load-Balanced Opportunistic Routing for Duty-Cycled Wireless Sensor Networks, Ieee Transactions on Mobile Computing, 16 (2017), 1940-1955.

[21]

Z. Y. SunY. X. ShuX. F. XingW. WeiH. B. Song and W. Li, LPOCS: A Novel Linear Programming Optimization Coverage Scheme in Wireless Sensor Networks, Ad Hoc & Sensor Wireless Networks, 33 (2016), 173-197.

[22]

Z. Y. SunY. S. ZhangY. L. NieW. WeiJ. Lloret and H. B. Song, CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks, Wireless Networks, 23 (2017), 1201-1222.

[23]

G. K. C. Thevar and G. Rohini, Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks, Wireless Networks, 23 (2017), 1479-1489.

[24]

L. WangP. H. Kao and M. T. Wu, Using Partial Coverage Strategy to Prolong Service Time of a Cluster Based Wireless Sensor Network, Journal of Internet Technology, 18 (2017), 371-377.

[25]

D. S. WangM. ZhangZ. LiC. SongM. X. FuJ. Li and X. Chen, System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm, Optics Communications, 399 (2017), 1-12.

[26]

M. Wazid and A. K. Das, A secure group-based blackhole node detection scheme for hierarchical wireless sensor networks, Wireless Personal Communications, 94 (2017), 1165-1191.

[27]

C. L. Yang and K. W. Chin, On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity, Ieee Transactions on Industrial Informatics, 13 (2017), 27-36.

[28]

J. YickB. Mukherjee and D. Ghosal, Wireless sensor network survey, Computer Networks, 52 (2008), 2292-2330.

show all references

References:
[1]

A. A. Abbasi and M. Younis, A survey on clustering algorithms for wireless sensor networks, Computer Communications, 30 (2007), 2826-2841.

[2]

G. Ahmed and N. M. Khan, Adaptive power-control based energy-efficient routing in wireless sensor networks, Wireless Personal Communications, 94 (2017), 1297-1329.

[3]

I. F. AkyildizT. Melodia and K. R. Chowdhury, A survey on wireless multimedia sensor networks, Computer Networks, 51 (2007), 921-960.

[4]

I. F. AkyildizW. SuY. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: A survey, Computer Networks, 38 (2002), 393-422.

[5]

O. M. Alia and A. Al-Ajouri, Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm, Ieee Sensors Journal, 17 (2017), 882-896.

[6]

M. AlipioN. M. TiglaoA. GriloF. BokhariU. Chaudhry and S. Qureshi, Cache-based transport protocols in wireless sensor networks: A survey and future directions, Journal of Network and Computer Applications, 88 (2017), 29-49.

[7]

G. AnastasiC. MarcoM. Di Francesco and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad Hoc Networks, 7 (2009), 537-568.

[8]

N. A. AzizA. W. MohemmedM. Y. AliasK. Aziz and S. Syahali, Coverage maximization and energy conservation for mobile wireless sensor networks: A two phase particle swarm optimization algorithm, International Journal of Natural Computing Research, 3 (2012), 43-63.

[9]

M. BoudaliM. R. SenouciM. Aissani and W. K. Hidouci, Activities scheduling algorithms based on probabilistic coverage models for wireless sensor networks, Annals of Telecommunications, 72 (2017), 221-232.

[10]

A. BoudriesM. Amad and P. Siarry, Novel approach for replacement of a failure node in wireless sensor network, Telecommunication Systems, 65 (2017), 341-350.

[11]

K. Bouyahia and M. Benchaiba, CRVR: Connectivity Repairing in Wireless Sensor Networks with Void Regions, Journal of Network and Systems Management, 25 (2017), 536-557.

[12]

H. Hakli and H. Uguz, A novel approach for automated land partitioning using genetic algorithm, Expert Systems with Applications, 82 (2017), 10-18.

[13]

G. J. HanL. LiuJ. F. JiangL. Shu and G. Hancke, Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks, Ieee Transactions on Industrial Informatics, 13 (2017), 135-143.

[14]

S. KebirI. Borne and D. Meslati, A genetic algorithm-based approach for automated refactoring of component-based software, Information and Software Technology, 88 (2017), 17-36.

[15]

P. Martinez-CanadaC. MorillasH. E. PlesserS. Romero and F. Pelayo, Genetic algorithm for optimization of models of the early stages in the visual system, Neurocomputing, 250 (2017), 101-108.

[16]

A. Mehrabi and K. Kim, General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks, IEEE Transactions on Mobile Computing, 16 (2017), 1881-1896.

[17]

T. NguyenC. So-InN. Nguyen and S. Phoemphon, A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks, Peer-to-Peer Networking and Applications, 10 (2017), 519-536.

[18]

A. PananjadyV. K. Bagaria and R. Vaze, Optimally Approximating the Coverage Lifetime of Wireless Sensor Networks, IEEE-ACM Transactions on Networking, 25 (2017), 98-111.

[19]

D. Raposo, A. Rodrigues, J. S. Silva and F. Boavida, A Taxonomy of Faults for Wireless Sensor Networks, Journal of Network and Systems Management, 25 (2017), 591-611.

[20]

J. So and H. Byun, Load-Balanced Opportunistic Routing for Duty-Cycled Wireless Sensor Networks, Ieee Transactions on Mobile Computing, 16 (2017), 1940-1955.

[21]

Z. Y. SunY. X. ShuX. F. XingW. WeiH. B. Song and W. Li, LPOCS: A Novel Linear Programming Optimization Coverage Scheme in Wireless Sensor Networks, Ad Hoc & Sensor Wireless Networks, 33 (2016), 173-197.

[22]

Z. Y. SunY. S. ZhangY. L. NieW. WeiJ. Lloret and H. B. Song, CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks, Wireless Networks, 23 (2017), 1201-1222.

[23]

G. K. C. Thevar and G. Rohini, Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks, Wireless Networks, 23 (2017), 1479-1489.

[24]

L. WangP. H. Kao and M. T. Wu, Using Partial Coverage Strategy to Prolong Service Time of a Cluster Based Wireless Sensor Network, Journal of Internet Technology, 18 (2017), 371-377.

[25]

D. S. WangM. ZhangZ. LiC. SongM. X. FuJ. Li and X. Chen, System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm, Optics Communications, 399 (2017), 1-12.

[26]

M. Wazid and A. K. Das, A secure group-based blackhole node detection scheme for hierarchical wireless sensor networks, Wireless Personal Communications, 94 (2017), 1165-1191.

[27]

C. L. Yang and K. W. Chin, On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity, Ieee Transactions on Industrial Informatics, 13 (2017), 27-36.

[28]

J. YickB. Mukherjee and D. Ghosal, Wireless sensor network survey, Computer Networks, 52 (2008), 2292-2330.

Figure 1.  An example of node deployment scheme
Figure 2.  Initial node deployment for different schemes
Figure 3.  Coverage ratio for various number of sensors
Figure 4.  Maximum moved distance for various number of sensors
Figure 5.  Network lifetime with various number of sensors
Figure 6.  Network lifetime with various number of targets
Table 1.  Simulation settings
Parameter Value
Sensing field $50\times50$m$^2$
Coverage radius 5m
Number of targets 10-60
Initial population size 60
Mutation rate 3 %
Parameter Value
Sensing field $50\times50$m$^2$
Coverage radius 5m
Number of targets 10-60
Initial population size 60
Mutation rate 3 %
Table 2.  Energy cost in this experiment
Working state Energy cost(mA)
Active 13.58
Transmitting 14.41
Receiving 9.37
Working state Energy cost(mA)
Active 13.58
Transmitting 14.41
Receiving 9.37
[1]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1371-1384. doi: 10.3934/dcdss.2019094

[2]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1385-1398. doi: 10.3934/dcdss.2019095

[3]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018134

[4]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1327-1340. doi: 10.3934/dcdss.2019091

[5]

Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1399-1412. doi: 10.3934/dcdss.2019096

[6]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018142

[7]

Honggang Yu. An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 901-914. doi: 10.3934/dcdss.2019060

[8]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[9]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[10]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[11]

Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763

[12]

Wei Fu, Jun Liu, Yirong Lai. Collaborative filtering recommendation algorithm towards intelligent community. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 811-822. doi: 10.3934/dcdss.2019054

[13]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial & Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[14]

Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1279-1296. doi: 10.3934/jimo.2014.10.1279

[15]

Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018200

[16]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[17]

Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

[18]

Yaw Chang, Lin Chen. Solve the vehicle routing problem with time windows via a genetic algorithm. Conference Publications, 2007, 2007 (Special) : 240-249. doi: 10.3934/proc.2007.2007.240

[19]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[20]

Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]