• Previous Article
    Tourism destination competitiveness evaluation in Sichuan province using TOPSIS model based on information entropy weights
  • DCDS-S Home
  • This Issue
  • Next Article
    Total factor productivity growth and technological change in the telecommunications industry
doi: 10.3934/dcdss.2019052

On the design of full duplex wireless system with chaotic sequences

1. 

School of Electronics Engineering and Computer Science, Peking University, Beijing, China

2. 

Department of Computer Science, Yale University, New Haven, CT, USA

* Corresponding author: Ruwu Xiao

Received  September 2017 Revised  January 2018 Published  November 2018

Fund Project: The first author is supported by the NNSFC under grant No. 61371072

This paper proposes a novel approach for full duplex using chaotic sequences which is known as the asynchronous code-division duplex (Async-CDD) system. The Async-CDD system can transmit and receive signals at the same time and in the same frequency channel without time slot synchronization. The data rate of the Async-CDD system is 8 times higher than the conventional CDD system and is the same as a non-spreading system. The property of low block cross-correlation of the chaotic sequence allows the Async-CDD system achieve duplex interference suppression at any duplex delay. And the huge number of available code words/blocks of the chaotic sequence allows the Async-CDD system increase the data rate by increasing the number of multiplexed sub-channels. When both of the code length of the orthogonal chaotic code and the number of multiplexed sub-channels are 128, the orthogonal chaotic code provides 30.40 dBc self-interference suppression in average, which is 6.99 dB better than the orthogonal Gold code.

Citation: Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2019052
References:
[1]

A. L. A. Aboltins, Selection and performance analysis of chaotic spreading sequences for DS-CDMA systems, in Advances in Wireless and Optical Communications (RTUWO), 2016, 38–45.

[2]

E. Ahmed and A. M. Eltawil, All-digital self-interference cancellation technique for full-duplex systems, IEEE Transactions on Wireless Communications, 14 (2015), 3519-3532.

[3]

M. DuarteC. Dick and A. Sabharwal, Experiment-driven characterization of full-duplex wireless systems, IEEE Transactions on Wireless Communications, 11 (2012), 4296-4307.

[4]

M. DuarteA. SabharwalV. AggarwalR. JanaK. K. RamakrishnanC. W. Rice and N. K. Shankaranarayanan, Design and characterization of a full-duplex multiantenna system for WiFi networks, IEEE Transactions on Vehicular Technology, 63 (2014), 1160-1177.

[5]

E. EverettA. Sahai and A. Sabharwal, Passive self-interference suppression for full-duplex infrastructure nodes, IEEE Transactions on Wireless Communications, 13 (2014), 680-694.

[6]

Y. HuaY. MaA. GholianY. LiA. C. Cirik and P. Liang, Radio self-interference cancellation by transmit beamforming, all-analog cancellation and blind digital tuning, Signal Processing, 108 (2015), 322-340.

[7]

F. Jian and S. Dandan, Complex Network Theory and Its Application Research on P2P Networks, Applied Mathematics and Nonlinear Sciences, 1 (2016), 45-52.

[8]

B. JiaoM. WenM. Ma and H. V. Poor, Spatial modulated full duplex, IEEE Wireless Communications Letters, 3 (2014), 641-644.

[9]

X. Jin, M. Ma, B. Jiao and W. C. Y. Lee, Studies on spectral efficiency of the cdd system, in Vehicular Technology Conference Fall, 2009, 1–5.

[10]

A. S. B. T. Krishna, Generation of biphase sequences using different logistic maps, in International Conference on Communication and Signal Processing (ICCSP), 2016, 2102–2104.

[11]

P. Kumar and S. Chakrabarti, A new overloading scheme for cellular DS-CDMA using orthogonal Gold codes, in Vehicular Technology Conference (VTC), 2008, 1042–1046.

[12]

W. C. Y. Lee, The most spectrum-efficient duplexing system: CDD, IEEE Communications Magazine, 40 (2002), 163–166.

[13]

A. Murua and J. Sanz-Serna, Vibrational resonance: a study with high-order word-series averaging, Applied Mathematics and Nonlinear Sciences, 1 (2016), 239-246.

[14]

M. Pal and S. Chattopadhyay, A novel orthogonal minimum cross-correlation spreading code in CDMA system, in International Conference on Emerging Trends in Robotics and Communication Technologies, 2010, 80–84.

[15]

J. S. Pereira and H. J. A. D. Silva, M-ary mutually orthogonal complementary gold codes, in Signal Processing Conference, 2009 European, 2009, 1636–1640.

[16]

J. G. Proakis, Digital Communications Fourth Edition, McGraw-Hill Companies, Inc., New York, NY, 1998.

[17]

S. Shao, X. Quan, Y. Shen and Y. Tang, Effect of phase noise on digital self-interference cancellation in wireless full duplex, 2759–2763.

[18]

Y. ShenJ. Zhou and Y. Tang, Digital self-interference cancellation in wireless co-time and co-frequency full-duplex system, Wireless Personal Communications, 82 (2015), 2557-2565.

[19]

X. H. TangP. Z. Fan and S. Matsufuji, Lower bounds on correlation of spreading sequence set with low or zero correlation zone, Electronics Letters, 36 (2002), 551-552.

show all references

References:
[1]

A. L. A. Aboltins, Selection and performance analysis of chaotic spreading sequences for DS-CDMA systems, in Advances in Wireless and Optical Communications (RTUWO), 2016, 38–45.

[2]

E. Ahmed and A. M. Eltawil, All-digital self-interference cancellation technique for full-duplex systems, IEEE Transactions on Wireless Communications, 14 (2015), 3519-3532.

[3]

M. DuarteC. Dick and A. Sabharwal, Experiment-driven characterization of full-duplex wireless systems, IEEE Transactions on Wireless Communications, 11 (2012), 4296-4307.

[4]

M. DuarteA. SabharwalV. AggarwalR. JanaK. K. RamakrishnanC. W. Rice and N. K. Shankaranarayanan, Design and characterization of a full-duplex multiantenna system for WiFi networks, IEEE Transactions on Vehicular Technology, 63 (2014), 1160-1177.

[5]

E. EverettA. Sahai and A. Sabharwal, Passive self-interference suppression for full-duplex infrastructure nodes, IEEE Transactions on Wireless Communications, 13 (2014), 680-694.

[6]

Y. HuaY. MaA. GholianY. LiA. C. Cirik and P. Liang, Radio self-interference cancellation by transmit beamforming, all-analog cancellation and blind digital tuning, Signal Processing, 108 (2015), 322-340.

[7]

F. Jian and S. Dandan, Complex Network Theory and Its Application Research on P2P Networks, Applied Mathematics and Nonlinear Sciences, 1 (2016), 45-52.

[8]

B. JiaoM. WenM. Ma and H. V. Poor, Spatial modulated full duplex, IEEE Wireless Communications Letters, 3 (2014), 641-644.

[9]

X. Jin, M. Ma, B. Jiao and W. C. Y. Lee, Studies on spectral efficiency of the cdd system, in Vehicular Technology Conference Fall, 2009, 1–5.

[10]

A. S. B. T. Krishna, Generation of biphase sequences using different logistic maps, in International Conference on Communication and Signal Processing (ICCSP), 2016, 2102–2104.

[11]

P. Kumar and S. Chakrabarti, A new overloading scheme for cellular DS-CDMA using orthogonal Gold codes, in Vehicular Technology Conference (VTC), 2008, 1042–1046.

[12]

W. C. Y. Lee, The most spectrum-efficient duplexing system: CDD, IEEE Communications Magazine, 40 (2002), 163–166.

[13]

A. Murua and J. Sanz-Serna, Vibrational resonance: a study with high-order word-series averaging, Applied Mathematics and Nonlinear Sciences, 1 (2016), 239-246.

[14]

M. Pal and S. Chattopadhyay, A novel orthogonal minimum cross-correlation spreading code in CDMA system, in International Conference on Emerging Trends in Robotics and Communication Technologies, 2010, 80–84.

[15]

J. S. Pereira and H. J. A. D. Silva, M-ary mutually orthogonal complementary gold codes, in Signal Processing Conference, 2009 European, 2009, 1636–1640.

[16]

J. G. Proakis, Digital Communications Fourth Edition, McGraw-Hill Companies, Inc., New York, NY, 1998.

[17]

S. Shao, X. Quan, Y. Shen and Y. Tang, Effect of phase noise on digital self-interference cancellation in wireless full duplex, 2759–2763.

[18]

Y. ShenJ. Zhou and Y. Tang, Digital self-interference cancellation in wireless co-time and co-frequency full-duplex system, Wireless Personal Communications, 82 (2015), 2557-2565.

[19]

X. H. TangP. Z. Fan and S. Matsufuji, Lower bounds on correlation of spreading sequence set with low or zero correlation zone, Electronics Letters, 36 (2002), 551-552.

Figure 1.  Application Scenario of the CDD System
Figure 2.  The block-correlation performance of the OG code
Figure 3.  The block-correlation performance of the OC code
Table 1.  The Average Duplex Self-interference Suppression Performance with Different $N$
Code Type$N$ $Q$ ${C}_{aver}$ (dBc) ${C}_{worst}$ (dBc)
OG12812823.2818.99
51251229.8027.21
1024102432.6831.18
OC12812833.7924.69
25625637.1126.35
51251239.7726.95
1024102442.6525.29
Code Type$N$ $Q$ ${C}_{aver}$ (dBc) ${C}_{worst}$ (dBc)
OG12812823.2818.99
51251229.8027.21
1024102432.6831.18
OC12812833.7924.69
25625637.1126.35
51251239.7726.95
1024102442.6525.29
Table 2.  System parameter of the compared system
$N$$W$Max. $Q$ $Q$
CDD128+881616
Async-CDD with OG code128-12816
Async-CDD with OC code128-12816
$N$$W$Max. $Q$ $Q$
CDD128+881616
Async-CDD with OG code128-12816
Async-CDD with OC code128-12816
Table 3.  The self-interference suppression performance with different delay
$Q$$N$The number of $C(p, q)$
$\leq$ 24 dBc
The number of $C(p, q)$
$\leq$ 28 dBc
The number of $C(p, q)$
$\leq$ 30 dBc
CDD with161280168256
ZCZ code
Async-CDD16128225256256
with OG code
Async-CDD1612801033
with OC code
$Q$$N$The number of $C(p, q)$
$\leq$ 24 dBc
The number of $C(p, q)$
$\leq$ 28 dBc
The number of $C(p, q)$
$\leq$ 30 dBc
CDD with161280168256
ZCZ code
Async-CDD16128225256256
with OG code
Async-CDD1612801033
with OC code
[1]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[2]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[3]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[4]

Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491

[5]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[6]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[7]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[8]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[9]

Robert Stephen Cantrell, Chris Cosner, Shigui Ruan. Intraspecific interference and consumer-resource dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 527-546. doi: 10.3934/dcdsb.2004.4.527

[10]

Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu. The mean and noise of stochastic gene transcription with cell division. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1255-1270. doi: 10.3934/mbe.2018058

[11]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[12]

G.A.K. van Voorn, D. Stiefs, T. Gross, B. W. Kooi, Ulrike Feudel, S.A.L.M. Kooijman. Stabilization due to predator interference: comparison of different analysis approaches. Mathematical Biosciences & Engineering, 2008, 5 (3) : 567-583. doi: 10.3934/mbe.2008.5.567

[13]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[14]

Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1191-1208. doi: 10.3934/jimo.2014.10.1191

[15]

Giovanni Scardoni, Carlo Laudanna. Identifying critical traffic jam areas with node centralities interference and robustness. Networks & Heterogeneous Media, 2012, 7 (3) : 463-471. doi: 10.3934/nhm.2012.7.463

[16]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1371-1384. doi: 10.3934/dcdss.2019094

[17]

Leonid A. Bunimovich. Chaotic and nonchaotic mushrooms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 63-74. doi: 10.3934/dcds.2008.22.63

[18]

Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 797-825. doi: 10.3934/dcds.2011.31.797

[19]

Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014

[20]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]