June 2019, 12(3): 567-590. doi: 10.3934/dcdss.2019037

High-order solvers for space-fractional differential equations with Riesz derivative

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

* Corresponding author: mkowolax@yahoo.com (K.M. Owolabi)

Received  January 2017 Revised  September 2017 Published  September 2018

Fund Project: The research contained in this report is supported by South African National Research Foundation

This paper proposes the computational approach for fractional-in-space reaction-diffusion equation, which is obtained by replacing the space second-order derivative in classical reaction-diffusion equation with the Riesz fractional derivative of order $ α $ in $ (0, 2] $. The proposed numerical scheme for space fractional reaction-diffusion equations is based on the finite difference and Fourier spectral approximation methods. The paper utilizes a range of higher-order time stepping solvers which exhibit third-order accuracy in the time domain and spectral accuracy in the spatial domain to solve some fractional-in-space reaction-diffusion equations. The numerical experiment shows that the third-order ETD3RK scheme outshines its third-order counterparts, taking into account the computational time and accuracy. Applicability of the proposed methods is further tested with a higher dimensional system. Numerical simulation results show that pattern formation process in the classical sense is the same as in fractional scenarios.

Citation: Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037
References:
[1]

F. B. Adda, The differentiability in the fractional calculus, Nonlinear Analysis, 47 (2001), 5423-5428. doi: 10.1016/S0362-546X(01)00646-0.

[2]

G. AkrivisM. Crouzeix and C. Makridakis, Implicit xplicit multistep methods for quasilinear parabolic equations, Numerische Mathematik, 82 (1999), 521-541. doi: 10.1007/s002110050429.

[3]

O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons and Fractals, 89 (2016), 552-559. doi: 10.1016/j.chaos.2016.03.026.

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons and Fractals, 89 (2016), 547-551.

[5]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos Soliton and Fractals, 89 (2016), 539-546. doi: 10.1016/j.chaos.2016.03.012.

[6]

L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Education, Inc., New Jersey, 2007.

[7]

E. O. Asante-AsamaniA. Q. M. Khaliq and B. A. Wade, A real distinct poles Exponential Time Differencing scheme for reaction diffusion systems, Journal of Computational and Applied Mathematics, 299 (2016), 24-34. doi: 10.1016/j.cam.2015.09.017.

[8]

U. M. AscherS. J. Ruth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997), 151-167. doi: 10.1016/S0168-9274(97)00056-1.

[9]

U. M. AscherS. J. Ruth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995), 797-823. doi: 10.1137/0732037.

[10]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), 1-13. doi: 10.1186/s13662-016-0871-x.

[11]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.

[13]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012.

[14]

D. BaleanuR. Caponetto and J. T. Machado, Challenges in fractional dynamics and control theory, Journal of Vibration and Control, 22 (2016), 2151-2152. doi: 10.1177/1077546315609262.

[15]

D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012. doi: 10.1142/9789814355216.

[16]

D. A. BensonS. Wheatcraft and M. M. Meerschaert, pplication of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.

[17]

H. P. Bhatt and A. Q. M. Khaliq, The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems, Journal of Computational and Applied Mathematics, 285 (2015), 256-278. doi: 10.1016/j.cam.2015.02.017.

[18]

A. H. BhrawyM. A. Zaky and R. A. Van Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numerical Algorithms, 71 (2016), 151-180. doi: 10.1007/s11075-015-9990-9.

[19]

A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics, 294 (2015), 462-483. doi: 10.1016/j.jcp.2015.03.063.

[20]

A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numerical Algorithms, 73 (2016), 91-113. doi: 10.1007/s11075-015-0087-2.

[21]

N. F. Britton, Reaction-diffusion Equations and their Applications to Biology, Academic Press, London, 1986.

[22]

A. Bueno-OrovioD. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical mathematics, 54 (2014), 937-954. doi: 10.1007/s10543-014-0484-2.

[23]

M. P. CalvoJ. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Applied Numerical Mathematics, 37 (2001), 535-549. doi: 10.1016/S0168-9274(00)00061-1.

[24]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11.

[25]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455. doi: 10.1006/jcph.2002.6995.

[26]

Q. Du and W. Zhu, Stability analysis and applications of the exponential time differencing schemes, Journal of Computational and Applied Mathematics, 22 (2004), 200-209.

[27]

Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics, 45 (2005), 307-328. doi: 10.1007/s10543-005-7141-8.

[28]

W. Feller, On a generalization of Marcel Riesz potentials and the semi-groups generated by them, Middlelanden Lunds Universitets Matematiska Seminarium Comm. Sem. Mathm Universit de Lund (Suppl. ddi a M. Riesz), 1952 (1952), 72-81.

[29]

W. Feller, An Introduction to Probability Theory and Its Applications, New York-London-Sydney, 1968.

[30]

W. Gear and I. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM Journal on Scientific Computing, 24 (2003), 1091-1106. doi: 10.1137/S1064827501388157.

[31]

I. Grooms and K. Julien, Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, Journal of Computational Physics, 230 (2011), 3630-3650. doi: 10.1016/j.jcp.2011.02.007.

[32]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems, Springer-Verlag, New York, 1996. doi: 10.1007/978-3-642-05221-7.

[33]

A. K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM Journal Scientific Computing, 26 (2005), 1214-1233. doi: 10.1137/S1064827502410633.

[34]

C. Kennedy and M. Carpenter, Additive Runge-Kutta schemes for covection-diffusion-reaction-diffusion equations, Applied Numerical Mathematics, 44 (2003), 139-181. doi: 10.1016/S0168-9274(02)00138-1.

[35]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[36]

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, United Kingdom, 2001. doi: 10.1017/CBO9780511608520.

[37]

T. Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, Journal of Computational and Applied Mathematics, 215 (2008), 182-195. doi: 10.1016/j.cam.2007.04.003.

[38]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Taylor and Francis Group, London, 2015.

[39]

D. LiC. ZhangW. Wang and Y. Zhang, Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Applied Mathematical Modelling, 35 (2011), 2711-2722. doi: 10.1016/j.apm.2010.11.061.

[40]

Y. F. LuchkoH. Matinez and J. J. Trujillo, Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis, 11 (2008), 457-470.

[41]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Connecticut, 2006.

[42]

R. MaginM. D. OrtigueiraI. Podlubny and J. Trujillo, On the fractional signals and systems, Signal Processing, 91 (2011), 350-371. doi: 10.1016/j.sigpro.2010.08.003.

[43]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers and Mathematics with Applications, 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039.

[44]

F. MainardiG. Pagnini and R. K. Saxena, Fox H functions in fractional diffusion, Journal of Computational and Applied Mathematics, 178 (2005), 321-331. doi: 10.1016/j.cam.2004.08.006.

[45]

M. M. MeerschaertD. A. Benson and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resource Research, 37 (2001), 1543-1550.

[46]

M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advectiondispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004), 65-77. doi: 10.1016/j.cam.2004.01.033.

[47]

M. M. MeerschaertH. P. Scheffler and C. Tadjeran, Finite difference methods for twodimensional fractional dispersion equation, Journal of Computational Physics, 211 (2006), 249-261. doi: 10.1016/j.jcp.2005.05.017.

[48]

F. C. MeralT. J. Royston and R. Magin, Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 939-945. doi: 10.1016/j.cnsns.2009.05.004.

[49]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[50]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37 (2004), R161-R208. doi: 10.1088/0305-4470/37/31/R01.

[51]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[52]

J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Springer-Verlag, New York, 2002.

[53]

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, New York, 2011. doi: 10.1007/978-94-007-0747-4.

[54]

K. M. Owolabi, Mathematical study of two-variable systems with adaptive numerical methods, Numerical Analysis and Applications, 19 (2016), 218-230. doi: 10.15372/SJNM20160304.

[55]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulations, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[56]

K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European Physical Journal Plus, 131 (2016), 335. doi: 10.1140/epjp/i2016-16335-8.

[57]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos Solitons and Fractals, 93 (2016), 89-98. doi: 10.1016/j.chaos.2016.10.005.

[58]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[59]

K. M. Owolabi, Robust IMEX schemes for solving two-dimensional reaction-diffusion models, International Journal of Nonlinear Science and Numerical Simulations, 16 (2015), 271-284. doi: 10.1515/ijnsns-2015-0004.

[60]

K. M. Owolabi and K. C. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Applied Mathematics and Computation, 240 (2014), 30-50. doi: 10.1016/j.amc.2014.04.055.

[61]

S. PetrovskiiK. KawasakiF. Takasu and N. Shigesada, Diffusive waves, dynamic stabilization and spatio-temporal chaos in a community of three competitive species, Japan Journal of Industrial and Applied Mathematics, 18 (2001), 459-481. doi: 10.1007/BF03168586.

[62]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128. doi: 10.1016/j.cnsns.2016.04.020.

[63]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[64]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007.

[65]

S. G. Samko, A. A. Kilbas and O. I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.

[66]

E. ScalasR. Gorenflo and F. Mainardid, Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, 284 (2000), 376-384. doi: 10.1016/S0378-4371(00)00255-7.

[67]

Z. TomovskiT. SandevR. Metzler and J. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A, 391 (2012), 2527-2542. doi: 10.1016/j.physa.2011.12.035.

[68]

V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology, Physics of Life Reviews, 6 (2009), 267-310.

[69]

E. Weinan, Analysis of the heterogeneous multiscale method for ordinary differential equations, Communications in Mathematical Sciences, 3 (2003), 423-436. doi: 10.4310/CMS.2003.v1.n3.a3.

[70]

Q. YangF. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34 (2010), 200-218. doi: 10.1016/j.apm.2009.04.006.

show all references

References:
[1]

F. B. Adda, The differentiability in the fractional calculus, Nonlinear Analysis, 47 (2001), 5423-5428. doi: 10.1016/S0362-546X(01)00646-0.

[2]

G. AkrivisM. Crouzeix and C. Makridakis, Implicit xplicit multistep methods for quasilinear parabolic equations, Numerische Mathematik, 82 (1999), 521-541. doi: 10.1007/s002110050429.

[3]

O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons and Fractals, 89 (2016), 552-559. doi: 10.1016/j.chaos.2016.03.026.

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons and Fractals, 89 (2016), 547-551.

[5]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos Soliton and Fractals, 89 (2016), 539-546. doi: 10.1016/j.chaos.2016.03.012.

[6]

L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Education, Inc., New Jersey, 2007.

[7]

E. O. Asante-AsamaniA. Q. M. Khaliq and B. A. Wade, A real distinct poles Exponential Time Differencing scheme for reaction diffusion systems, Journal of Computational and Applied Mathematics, 299 (2016), 24-34. doi: 10.1016/j.cam.2015.09.017.

[8]

U. M. AscherS. J. Ruth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997), 151-167. doi: 10.1016/S0168-9274(97)00056-1.

[9]

U. M. AscherS. J. Ruth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995), 797-823. doi: 10.1137/0732037.

[10]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), 1-13. doi: 10.1186/s13662-016-0871-x.

[11]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.

[13]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012.

[14]

D. BaleanuR. Caponetto and J. T. Machado, Challenges in fractional dynamics and control theory, Journal of Vibration and Control, 22 (2016), 2151-2152. doi: 10.1177/1077546315609262.

[15]

D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012. doi: 10.1142/9789814355216.

[16]

D. A. BensonS. Wheatcraft and M. M. Meerschaert, pplication of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.

[17]

H. P. Bhatt and A. Q. M. Khaliq, The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems, Journal of Computational and Applied Mathematics, 285 (2015), 256-278. doi: 10.1016/j.cam.2015.02.017.

[18]

A. H. BhrawyM. A. Zaky and R. A. Van Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numerical Algorithms, 71 (2016), 151-180. doi: 10.1007/s11075-015-9990-9.

[19]

A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics, 294 (2015), 462-483. doi: 10.1016/j.jcp.2015.03.063.

[20]

A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numerical Algorithms, 73 (2016), 91-113. doi: 10.1007/s11075-015-0087-2.

[21]

N. F. Britton, Reaction-diffusion Equations and their Applications to Biology, Academic Press, London, 1986.

[22]

A. Bueno-OrovioD. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical mathematics, 54 (2014), 937-954. doi: 10.1007/s10543-014-0484-2.

[23]

M. P. CalvoJ. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Applied Numerical Mathematics, 37 (2001), 535-549. doi: 10.1016/S0168-9274(00)00061-1.

[24]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11.

[25]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455. doi: 10.1006/jcph.2002.6995.

[26]

Q. Du and W. Zhu, Stability analysis and applications of the exponential time differencing schemes, Journal of Computational and Applied Mathematics, 22 (2004), 200-209.

[27]

Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics, 45 (2005), 307-328. doi: 10.1007/s10543-005-7141-8.

[28]

W. Feller, On a generalization of Marcel Riesz potentials and the semi-groups generated by them, Middlelanden Lunds Universitets Matematiska Seminarium Comm. Sem. Mathm Universit de Lund (Suppl. ddi a M. Riesz), 1952 (1952), 72-81.

[29]

W. Feller, An Introduction to Probability Theory and Its Applications, New York-London-Sydney, 1968.

[30]

W. Gear and I. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM Journal on Scientific Computing, 24 (2003), 1091-1106. doi: 10.1137/S1064827501388157.

[31]

I. Grooms and K. Julien, Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, Journal of Computational Physics, 230 (2011), 3630-3650. doi: 10.1016/j.jcp.2011.02.007.

[32]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems, Springer-Verlag, New York, 1996. doi: 10.1007/978-3-642-05221-7.

[33]

A. K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM Journal Scientific Computing, 26 (2005), 1214-1233. doi: 10.1137/S1064827502410633.

[34]

C. Kennedy and M. Carpenter, Additive Runge-Kutta schemes for covection-diffusion-reaction-diffusion equations, Applied Numerical Mathematics, 44 (2003), 139-181. doi: 10.1016/S0168-9274(02)00138-1.

[35]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[36]

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, United Kingdom, 2001. doi: 10.1017/CBO9780511608520.

[37]

T. Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, Journal of Computational and Applied Mathematics, 215 (2008), 182-195. doi: 10.1016/j.cam.2007.04.003.

[38]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Taylor and Francis Group, London, 2015.

[39]

D. LiC. ZhangW. Wang and Y. Zhang, Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Applied Mathematical Modelling, 35 (2011), 2711-2722. doi: 10.1016/j.apm.2010.11.061.

[40]

Y. F. LuchkoH. Matinez and J. J. Trujillo, Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis, 11 (2008), 457-470.

[41]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Connecticut, 2006.

[42]

R. MaginM. D. OrtigueiraI. Podlubny and J. Trujillo, On the fractional signals and systems, Signal Processing, 91 (2011), 350-371. doi: 10.1016/j.sigpro.2010.08.003.

[43]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers and Mathematics with Applications, 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039.

[44]

F. MainardiG. Pagnini and R. K. Saxena, Fox H functions in fractional diffusion, Journal of Computational and Applied Mathematics, 178 (2005), 321-331. doi: 10.1016/j.cam.2004.08.006.

[45]

M. M. MeerschaertD. A. Benson and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resource Research, 37 (2001), 1543-1550.

[46]

M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advectiondispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004), 65-77. doi: 10.1016/j.cam.2004.01.033.

[47]

M. M. MeerschaertH. P. Scheffler and C. Tadjeran, Finite difference methods for twodimensional fractional dispersion equation, Journal of Computational Physics, 211 (2006), 249-261. doi: 10.1016/j.jcp.2005.05.017.

[48]

F. C. MeralT. J. Royston and R. Magin, Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 939-945. doi: 10.1016/j.cnsns.2009.05.004.

[49]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[50]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37 (2004), R161-R208. doi: 10.1088/0305-4470/37/31/R01.

[51]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[52]

J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Springer-Verlag, New York, 2002.

[53]

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, New York, 2011. doi: 10.1007/978-94-007-0747-4.

[54]

K. M. Owolabi, Mathematical study of two-variable systems with adaptive numerical methods, Numerical Analysis and Applications, 19 (2016), 218-230. doi: 10.15372/SJNM20160304.

[55]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulations, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[56]

K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European Physical Journal Plus, 131 (2016), 335. doi: 10.1140/epjp/i2016-16335-8.

[57]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos Solitons and Fractals, 93 (2016), 89-98. doi: 10.1016/j.chaos.2016.10.005.

[58]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[59]

K. M. Owolabi, Robust IMEX schemes for solving two-dimensional reaction-diffusion models, International Journal of Nonlinear Science and Numerical Simulations, 16 (2015), 271-284. doi: 10.1515/ijnsns-2015-0004.

[60]

K. M. Owolabi and K. C. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Applied Mathematics and Computation, 240 (2014), 30-50. doi: 10.1016/j.amc.2014.04.055.

[61]

S. PetrovskiiK. KawasakiF. Takasu and N. Shigesada, Diffusive waves, dynamic stabilization and spatio-temporal chaos in a community of three competitive species, Japan Journal of Industrial and Applied Mathematics, 18 (2001), 459-481. doi: 10.1007/BF03168586.

[62]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128. doi: 10.1016/j.cnsns.2016.04.020.

[63]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[64]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007.

[65]

S. G. Samko, A. A. Kilbas and O. I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.

[66]

E. ScalasR. Gorenflo and F. Mainardid, Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, 284 (2000), 376-384. doi: 10.1016/S0378-4371(00)00255-7.

[67]

Z. TomovskiT. SandevR. Metzler and J. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A, 391 (2012), 2527-2542. doi: 10.1016/j.physa.2011.12.035.

[68]

V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology, Physics of Life Reviews, 6 (2009), 267-310.

[69]

E. Weinan, Analysis of the heterogeneous multiscale method for ordinary differential equations, Communications in Mathematical Sciences, 3 (2003), 423-436. doi: 10.4310/CMS.2003.v1.n3.a3.

[70]

Q. YangF. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34 (2010), 200-218. doi: 10.1016/j.apm.2009.04.006.

Figure 1.  Stability regions of (a) ETD3RK, (b) IMEX3PC with choice $(\mu, \psi, \eta) = (1, 0, 0)$
Figure 2.  Convergence results of different schemes for one-dimensional problem (1) at (a) $t = 0.1$ and (b) $t = 2.0$ for $\alpha = 1.45$, $d = 8$. Simulation runs for $N = 200$
Figure 3.  Solution of the fractional chemical system (42) in two-dimensions for subdiffusive (upper-row) and supperdiffusive (lower-row) scenarios. The parameters used are: $D = 0.39, d = 4, \varpi = 0.79, \beta = -0.91, \tau_2 = 0.278$ and $\tau_3 = 0.1$ at $t = 2$ for $N = 200$
Figure 4.  Superdiffusive distribution of chemical system (42) mitotic patterns in two dimensions at some instances of $\alpha$ with initial conditions: $u_0 = 1-\exp(-10(x-0.5)^2+(y-0.5)^2), \;\;v_0 = \exp(-10(x-0.5)^2+2(y-0.5)^2)$. Other parameters are given in Figure 3 caption
Figure 5.  Three dimensional results of system (42) showing the species evolution at subdiffusive ($\alpha = 0.35$) and superdiffusive ($\alpha = 1.91$) cases for $\tau_3 = 0.21$, $N = 50$ and final time $t = 5$. Other parameters are given in Figure 3 caption
Figure 6.  Three dimensional results for system (42) at different instances of fractional power $\alpha$, with $\tau_3 = 0.26$ and final time $t = 5$. The first and second columns correspond to subdiffusive and superdiffusive cases. Other parameters are given in Figure 3 caption
Table 1.  The maximum norm error and timing results for solving equation (1) in one-dimensional space with the exact solution and source term (40) using the FDM and FSM in conjunction with the IMEX3RK scheme at some instances of fractional power $\alpha$ in sub- and supper-diffusive scenarios for $t = 1$, $d = 0.5$ and $N = 200$
Method$\alpha=0.25$$\alpha=0.50$$\alpha=0.75$$\alpha=1.25$$\alpha=1.50$$\alpha=1.75$
FDM9.2570e-061.8864e-052.8615e-054.8107e-055.7776e-056.7399e-05
0.1674s0.1682s0.1693s0.1718s0.1673s0.1685s
FSM2.7055e-096.2174e-091.0710e-082.4231e-083.4382e-084.7695e-08
0.1664s0.1663s0.1665s0.1677s0.1663s0.1659s
Method$\alpha=0.25$$\alpha=0.50$$\alpha=0.75$$\alpha=1.25$$\alpha=1.50$$\alpha=1.75$
FDM9.2570e-061.8864e-052.8615e-054.8107e-055.7776e-056.7399e-05
0.1674s0.1682s0.1693s0.1718s0.1673s0.1685s
FSM2.7055e-096.2174e-091.0710e-082.4231e-083.4382e-084.7695e-08
0.1664s0.1663s0.1665s0.1677s0.1663s0.1659s
Table 2.  The maximum norm errors for two dimensional problem (1) with exact solution and local source term (41) obtained with different scheme at some instances of fractional power $\alpha$ and $N$ at final time $t = 1.5$ and $d = 10$
Method$N$$0<\alpha<1$ $1<\alpha< 2$
$\alpha=0.15$CPU(s)$\alpha=0.63$CPU(s)$\alpha=1.37$CPU(s)$\alpha=1.89$CPU(s)
IMEX3RK$100$9.15E-060.214.57E-050.271.33E-040.272.26E-040.27
$200$7.17E-060.273.58E-050.271.04E-040.271.77E-040.27
$300$2.86E-080.261.43E-050.284.14E-050.227.06E-080.26
$400$1.34E-060.266.71E-060.271.93E-050.273.29E-050.27
IMEX3PC$100$4.49E-060.262.43E-050.277.30E-050.271.24E-040.26
$200$3.51E-060.271.90E-050.275.72E-050.279.75E-050.27
$300$1.39E-060.277.54E-060.282.29E-050.293.90E-050.28
$400$6.43E-070.273.48E-060.271.07E-050.271.83E-050.28
ETD3RK$100$1.87E-070.261.01E-060.273.04E-060.265.18E-060.26
$200$1.46E-070.277.93E-070.282.38E-060.274.06E-060.27
$300$5.79E-080.273.14E-070.299.54E-070.271.62E-060.28
$400$2.68E-080.271.45E-070.284.48E-070.277.64E-070.27
Method$N$$0<\alpha<1$ $1<\alpha< 2$
$\alpha=0.15$CPU(s)$\alpha=0.63$CPU(s)$\alpha=1.37$CPU(s)$\alpha=1.89$CPU(s)
IMEX3RK$100$9.15E-060.214.57E-050.271.33E-040.272.26E-040.27
$200$7.17E-060.273.58E-050.271.04E-040.271.77E-040.27
$300$2.86E-080.261.43E-050.284.14E-050.227.06E-080.26
$400$1.34E-060.266.71E-060.271.93E-050.273.29E-050.27
IMEX3PC$100$4.49E-060.262.43E-050.277.30E-050.271.24E-040.26
$200$3.51E-060.271.90E-050.275.72E-050.279.75E-050.27
$300$1.39E-060.277.54E-060.282.29E-050.293.90E-050.28
$400$6.43E-070.273.48E-060.271.07E-050.271.83E-050.28
ETD3RK$100$1.87E-070.261.01E-060.273.04E-060.265.18E-060.26
$200$1.46E-070.277.93E-070.282.38E-060.274.06E-060.27
$300$5.79E-080.273.14E-070.299.54E-070.271.62E-060.28
$400$2.68E-080.271.45E-070.284.48E-070.277.64E-070.27
[1]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[2]

Angelamaria Cardone, Zdzisław Jackiewicz, Adrian Sandu, Hong Zhang. Construction of highly stable implicit-explicit general linear methods. Conference Publications, 2015, 2015 (special) : 185-194. doi: 10.3934/proc.2015.0185

[3]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[4]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[5]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[6]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[7]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[8]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[9]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[10]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[11]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[12]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[13]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[14]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[15]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[16]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[17]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[18]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[19]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[20]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (71)
  • HTML views (139)
  • Cited by (0)

Other articles
by authors

[Back to Top]