• Previous Article
    On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
  • DCDS-S Home
  • This Issue
  • Next Article
    A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation
June 2019, 12(3): 513-531. doi: 10.3934/dcdss.2019034

Weak Galerkin mixed finite element methods for parabolic equations with memory

School of Mathematical and Statistics, Shandong Normal University, Jinan 250014, China

* Corresponding author: Qiang Xu, Ailing Zhu.

Received  June 2017 Revised  September 2017 Published  September 2018

Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2014AM033)

We develop a semidiscrete and a backward Euler fully discrete weak Galerkin mixed finite element method for a parabolic differential equation with memory. The optimal order error estimates in both $ |\|·|\| $ and $ L^2 $ norms are established based on a generalized elliptic projection. In the numerical experiments, the equation is solved by the weak Galerkin schemes with spaces $ \{[P_{k}(T)]^2, P_{k}(e), P_{k+1}(T)\} $ for $ k = 0 $ and the numerical convergence rates confirm the theoretical results.

Citation: Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034
References:
[1]

H. CheZ. ZhouZ. Jiang and Y. Wang, $ H^1 $-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 29 (2013), 799-817. doi: 10.1002/num.21731.

[2]

Z. Jiang, $ L^∞(L^2) $ and $ L^∞(L^∞) $ error estimates for mixed methods for integro-differential equations of parabolic type, ESAIM Math. Model. Numer. Anal., 33 (1999), 531-546. doi: 10.1051/m2an:1999151.

[3]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Press, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.

[4]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345. doi: 10.1016/j.cam.2016.01.004.

[5]

A. K. Pani and G. Fairweather, $ H^1 $-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231-252. doi: 10.1093/imanum/22.2.231.

[6]

R. K. SinhaR. E. Ewing and R. D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47 (2009), 3269-3292. doi: 10.1137/080740490.

[7]

J. Wang and X. Ye, A weak Galerkin finite element methods for elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003.

[8]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4.

[9]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174. doi: 10.1007/s10444-015-9415-2.

[10]

E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), 785-809. doi: 10.1016/0362-546X(88)90039-9.

[11]

Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations with Robin boundary conditions, J. Comput. Math., 34 (2016), 532-548. doi: 10.4208/jcm.1604-m2015-0413.

[12]

C. ZhouY. ZouS. ChaiQ. Zhang and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., 123 (2018), 180-199. doi: 10.1016/j.apnum.2017.08.009.

[13]

Z. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425. doi: 10.1016/j.apm.2009.11.007.

[14]

A. Zhu, Discontinuous mixed covolume methods for linear parabolic integrodifferential problems, J. Appl. Math. , 2014 (2014), Art. ID 649468, 8 pp. doi: 10.1155/2014/649468.

[15]

A. ZhuT. Xu and Q. Xu, Weak Galerkin finite element methods for linear parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 32 (2016), 1357-1377. doi: 10.1002/num.22053.

show all references

References:
[1]

H. CheZ. ZhouZ. Jiang and Y. Wang, $ H^1 $-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 29 (2013), 799-817. doi: 10.1002/num.21731.

[2]

Z. Jiang, $ L^∞(L^2) $ and $ L^∞(L^∞) $ error estimates for mixed methods for integro-differential equations of parabolic type, ESAIM Math. Model. Numer. Anal., 33 (1999), 531-546. doi: 10.1051/m2an:1999151.

[3]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Press, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.

[4]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345. doi: 10.1016/j.cam.2016.01.004.

[5]

A. K. Pani and G. Fairweather, $ H^1 $-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231-252. doi: 10.1093/imanum/22.2.231.

[6]

R. K. SinhaR. E. Ewing and R. D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47 (2009), 3269-3292. doi: 10.1137/080740490.

[7]

J. Wang and X. Ye, A weak Galerkin finite element methods for elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003.

[8]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4.

[9]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174. doi: 10.1007/s10444-015-9415-2.

[10]

E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), 785-809. doi: 10.1016/0362-546X(88)90039-9.

[11]

Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations with Robin boundary conditions, J. Comput. Math., 34 (2016), 532-548. doi: 10.4208/jcm.1604-m2015-0413.

[12]

C. ZhouY. ZouS. ChaiQ. Zhang and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., 123 (2018), 180-199. doi: 10.1016/j.apnum.2017.08.009.

[13]

Z. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425. doi: 10.1016/j.apm.2009.11.007.

[14]

A. Zhu, Discontinuous mixed covolume methods for linear parabolic integrodifferential problems, J. Appl. Math. , 2014 (2014), Art. ID 649468, 8 pp. doi: 10.1155/2014/649468.

[15]

A. ZhuT. Xu and Q. Xu, Weak Galerkin finite element methods for linear parabolic integro-differential equations, Numer. Methods Partial Differential Equations, 32 (2016), 1357-1377. doi: 10.1002/num.22053.

Figure 1.  A typical uniform mesh on $(0, 1)\times(0, 1)$ with $h = 1/8$
Table 1.  Error behaviors of FWG-MFEM for the first example with $\Delta t = 4h^2$
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$4.8132e-002-1.7834e-003-
$2^{-4}$2.3657e-0021.02474.3564e-0042.0334
$2^{-5}$1.1823e-0021.00071.0872e-0042.0026
$2^{-6}$5.9209e-0030.99772.7312e-0051.9929
$2^{-7}$2.9583e-0031.00106.8160e-0062.0026
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$4.8132e-002-1.7834e-003-
$2^{-4}$2.3657e-0021.02474.3564e-0042.0334
$2^{-5}$1.1823e-0021.00071.0872e-0042.0026
$2^{-6}$5.9209e-0030.99772.7312e-0051.9929
$2^{-7}$2.9583e-0031.00106.8160e-0062.0026
Table 2.  Error behaviors of FWG-MFEM for the second example with $\Delta t = 4h^2$
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$1.0576e-000-2.1024e-002-
$2^{-4}$5.1613e-0011.03504.8443e-0032.1177
$2^{-5}$2.5868e-0010.99661.2043e-0032.0081
$2^{-6}$1.2929e-0011.00063.0093e-0042.0007
$2^{-7}$6.4627e-0021.00047.5140e-0052.0018
$h$ $|||e_{h}|||$ $\mbox{order}\approx$$\|\varepsilon_{h}\|$ $\mbox{order}\approx$
$2^{-3}$1.0576e-000-2.1024e-002-
$2^{-4}$5.1613e-0011.03504.8443e-0032.1177
$2^{-5}$2.5868e-0010.99661.2043e-0032.0081
$2^{-6}$1.2929e-0011.00063.0093e-0042.0007
$2^{-7}$6.4627e-0021.00047.5140e-0052.0018
[1]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[2]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[3]

Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114

[4]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[5]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086

[6]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[7]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[8]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[9]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[10]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[11]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[12]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[13]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[14]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[15]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[16]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[17]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[18]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[19]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[20]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (50)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]