June 2019, 12(3): 503-512. doi: 10.3934/dcdss.2019033

On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation

1. 

Iǧdır University, Faculty of Science and Art, Department of Mathematics, Iǧdır, Turkey

2. 

Kafkas University, Faculty of Science and Art, Department of Mathematics, Kars, Turkey

3. 

Atatürk University, Faculty of Science, Department of Mathematics, Erzurum, Turkey

* Corresponding author: gokce.kucuk@igdir.edu.tr

Received  March 2017 Revised  July 2017 Published  September 2018

In this paper, an optimal control problem for Schrödinger equation with complex coefficient which contains gradient is examined. A theorem is given that states the existence and uniqueness of the solution of the initial-boundary value problem for Schrödinger equation. Then for the solution of the optimal control problem, two different cases are investigated. Firstly, it is shown that the optimal control problem has a unique solution for $α >0$ on a dense subset $G$ on the space $H$ which contains the measurable square integrable functions on $\left(0,l\right)$ and secondly the optimal control problem has at least one solution for any $α ≥ 0$ on the space $H$.

Citation: Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033
References:
[1]

A. Abdon and D. Baleanu, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248. doi: 10.2298/FIL1708243A.

[2]

N. Y. AksoyG. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.

[3]

A. G. Butkovsky and Yu. I. Samoylenko, Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-009-1994-5.

[4]

M. Goebel, On Existence of optimal control, Math. Nachr., 53 (1979), 67-73. doi: 10.1002/mana.19790930106.

[5]

D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168.

[6]

K. Iosida, Functional Analysis, Mir, 1967, (in Russian).

[7]

A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641.

[8]

A. D. Iskenderov and G. Ya. Yagubov, Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.

[9]

A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.

[10]

A. D. Iskenderov, On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.

[11]

A. D. Iskenderov and N. M. Makhmudov, Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.

[12]

O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian).

[13]

J. L. Lions, Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983.

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.

[15]

N. M. Makhmudov, A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).

[16]

N. M. Makhmudov, On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian). doi: 10.3103/S1066369X10110034.

[17]

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, Winston & Sons, Washington, 1977.

[18]

G. YagubovF. Toyoglu and M. Subasi, An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187. doi: 10.1016/j.amc.2011.12.028.

[19]

G. Y. Yagubov and M. A. Musayeva, On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).

show all references

References:
[1]

A. Abdon and D. Baleanu, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31 (2017), 2243-2248. doi: 10.2298/FIL1708243A.

[2]

N. Y. AksoyG. Yagubov and B. Yildiz, The finite difference approximations of the optimal control problem for nonlinear Schrodinger equation, International Journal of Mathematical Modeling and Numerical Optimization, 3 (2012), 158-183.

[3]

A. G. Butkovsky and Yu. I. Samoylenko, Control of Quantum-Mechanical Process and Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-009-1994-5.

[4]

M. Goebel, On Existence of optimal control, Math. Nachr., 53 (1979), 67-73. doi: 10.1002/mana.19790930106.

[5]

D. N. Hao, Optimal control of quantum systems, Avtomatika i Telemechanika, 2 (1986), 14-21; (Russian)Automation and Remote Control, 47 (1986), 162-168.

[6]

K. Iosida, Functional Analysis, Mir, 1967, (in Russian).

[7]

A. D. Iskenderov and G. Ya. Yagubov, A variational method for solving inverse problem of determining the quantum mechanical potential, (Russian)Sov. Math. Doklady, 303 (1988), 1044-1048; Am. Math. Soc. , 38 (1989), 637-641.

[8]

A. D. Iskenderov and G. Ya. Yagubov, Optimal control of nonlinear quantum mechanical systems, Autom.Telemech., 12 (1989), 27-38.

[9]

A. D. Iskenderov, Definition of potantial in nonstationary Schrodinger equation, Mathematical Simulation and Optimal Control Problems, (2001), 6-36.

[10]

A. D. Iskenderov, On variational formulations of multidimensional inverse problems of mathematical physics, Dokl. Akad. Nauk SSSR, 274 (1984), 531-533.

[11]

A. D. Iskenderov and N. M. Makhmudov, Optimal control of a quantum mechanical system with the Lions quality criterion, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 16 (1995), 30-35.

[12]

O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian).

[13]

J. L. Lions, Contrôle Des Systèmes Distribués Singuliers, Gauthier Villars, Paris, 1983.

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.

[15]

N. M. Makhmudov, A difference method for solving an optimal control problem for the Schrödinger equation with the Lions quality criterion, Izv. Chelyabinsk. Nauchn. Tsentra, 3 (2009), 1-6 (in Russian).

[16]

N. M. Makhmudov, On an optimal control problem for the Schrödinger equation with a real-valued coefficient, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (2010), 31-40 (in Russian). doi: 10.3103/S1066369X10110034.

[17]

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, Winston & Sons, Washington, 1977.

[18]

G. YagubovF. Toyoglu and M. Subasi, An optimal control problem for two-dimensional Schrodinger Equation, Applied Mathematics and Computation, 218 (2012), 6177-6187. doi: 10.1016/j.amc.2011.12.028.

[19]

G. Y. Yagubov and M. A. Musayeva, On the identification problem for nonlinear Schrodinger equation, Differential Equation, 3 (1997), 1691-1698 (in Russian).

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[3]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[4]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[5]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[6]

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533

[7]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[8]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[9]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[10]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[11]

Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569

[12]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[13]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[14]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[15]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[16]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[17]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[18]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[19]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[20]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (52)
  • HTML views (112)
  • Cited by (0)

[Back to Top]