• Previous Article
    New exact solutions for some fractional order differential equations via improved sub-equation method
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
June 2019, 12(3): 455-474. doi: 10.3934/dcdss.2019030

Modeling the transmission dynamics of avian influenza with saturation and psychological effect

1. 

Department of Mathematics, City University of Science and Information, Technology, Peshawar, KP, 25000, Pakistan

2. 

Department of Mathematics, Abdul Wali Khan, University Mardan, KP, 23200, Pakistan

3. 

Department of Information Technology Education, University of Education, Winneba (Kumasi campus), Ghana

* Corresponding author: altafdir@gmail.com, makhan@cusit.edu.pk

Received  July 2017 Revised  November 2017 Published  September 2018

The present paper describes the mathematical analysis of an avian influenza model with saturation and psychological effect. The virus of avian influenza is not only a risk for birds but the population of human is also not safe from this. We proposed two models, one for birds and the other one for human. We consider saturated incidence rate and psychological effect in the model. The stability results for each model that is birds and human is investigated. The local and global dynamics for the disease free case of each model is proven when the basic reproduction number $ \mathcal{R}_{0b}<1$ and $ \mathcal{R}_0<1$. Further, the local and global stability of each model is investigated in the case when $ \mathcal{R}_{0b}>1$ and $ \mathcal{R}_0>1$. The mathematical results show that the considered saturation effect in population of birds and psychological effect in population of human does not effect the stability of equilibria, if the disease is prevalent then it can affect the number of infected humans. Numerical results are carried out in order to validate the theoretical results. Some numerical results for the proposed parameters are presented which can reduce the number of infective in the population of humans.

Citation: Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 455-474. doi: 10.3934/dcdss.2019030
References:
[1]

Centers for Disease Control and Prevention (CDC), Types of influenza virus, http://www.cdc.gov/?u/about/viruses/types.htm

[2]

Centers for Disease Control and Prevention (CDC), Information on Avian Influenza, http://www.cdc.gov/?u/avian?u/index.htm.

[3]

Centers for Disease Control and Prevention (CDC), Influenza Type A Viruses, http://www.cdc.gov/flu/avianflu/influenza-avirus-subtypes.htm.

[4]

F. B. Agusto, Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems, 113 (2013), 155-164. doi: 10.1016/j.biosystems.2013.06.004.

[5]

F. B. AgustoS. Bewick and W. F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244-267. doi: 10.1016/j.idm.2017.05.003.

[6]

J. D. Alexander, An overview of the epidemiology of avian influenza, Vaccine, 25 (2007), 5637-5644.

[7]

B. S. T. AlkahtaniA. Atangana and I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191-3200. doi: 10.22436/jnsa.010.06.32.

[8]

B. S. T. AlkahtaniI. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Advances in Mechanical Engineering, 9 (2017), 1-8. doi: 10.1177/1687814017705566.

[9]

B. S. T. AlkahtaniA. Atangana and I. Koca, A new nonlinear triadic model of predatorrey based on derivative with non-local and non-singular kernel, Advances in Mechanical Engineering, 8 (2016), 1-17.

[10]

M. R. Anderson, M. M. Robert and B. Anderson, Infectious diseases of humans: Dynamics and control, Oxford: Oxford University Press, 28 (1992).

[11]

A. Atangana and E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Advances in Difference Equations, 2013 (2013), 14pp. doi: 10.1186/1687-1847-2013-94.

[12]

A. Atangana and B. S. T. Alkahtani, Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016), 442-451. doi: 10.1002/cplx.21704.

[13]

A. Atangana and R. T. Alqahtani, Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), p40. doi: 10.3390/e18020040.

[14]

C. T. Bauch and A. P. Galvani, Social factors in epidemiology, Science, 342 (2013), 47-49. doi: 10.1126/science.1244492.

[15]

G. Birkhoff and G. C. Rota, Ordinary differential equations, Introductions to Higher Mathematics Ginn and Company, Boston, Mass.-New York-Toronto, 1962.

[16]

L. Bourouiba, Lydia, et al. , The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71 (2011), 487–516. doi: 10.1137/100803110.

[17]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8.

[18]

C. Castillo-Chavez, et al, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, Springer, New York, 2002.

[19]

X. Dongmei and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025.

[20]

P. Van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[21]

N. Ferguson, Capturing human behaviour, Nature, 446 (2007), 733-733. doi: 10.1038/446733a.

[22]

S. A. GourleyR. Liu and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589-610. doi: 10.1137/090767261.

[23]

A. B. Gumel, Global dynamics of a two-strain avian influenza model, International Journal of Computer Mathematics, 86 (2009), 85-108. doi: 10.1080/00207160701769625.

[24]

H. GuoM. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Am. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[25]

L. Joseph, M. Roy and M. Martcheva, An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, Nova Science Publishers, New York, (2009), 1–30.

[26]

E. Jung, et al. Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220–229. doi: 10.1016/j.jtbi.2009.05.031.

[27]

J. M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.

[28]

J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematis, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1976.

[29]

J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976.

[30]

M.-T. LiZ. JinG. Q. Sun and J. Zhang, Modeling direct and indirect disease transmission using multi-group mode, J. Math. Anal. Appl., 446 (2017), 1292-1309. doi: 10.1016/j.jmaa.2016.09.043.

[31]

W. Liping, Human Exposure to Live Poultry and Psychological and Behavioral Responses to Influenza A (H7N9), China-Emerging Infectious Disease journal, 20 (2014).

[32]

S. Liu, L. Pang, S. Ruan and X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Comp. Math. Meth. Med., (2015), Art. ID 913726, 12 pp. doi: 10.1155/2015/913726.

[33]

W.-M. LiuA. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23 (1986), 187-204. doi: 10.1007/BF00276956.

[34]

T. Necibe and M. Martcheva, Modeling seasonality in avian influenza H5N1, Journal of Biological Systems, 21 (2013), 1340004, 30 pp. doi: 10.1142/S0218339013400044.

[35]

X. Nijuan, et al., Knowledge, attitudes and practices (KAP) relating to avian influenza in urban and rural areas of China, BMC Infectious Diseases, 10 (2010), 34.

[36]

K. M. Owolabi and A. Atangana, Spatiotemporal dynamics of fractional predatorrey system with stage structure for the predator, International Journal of Applied and Computational Mathematics, 3 (2017), S903-S924. doi: 10.1007/s40819-017-0389-2.

[37]

L. RongsongJ. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Computational and Mathematical Methods in Medicine, 8 (2007), 153-164. doi: 10.1080/17486700701425870.

[38]

F. Sebastian, et al., The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences, 106 (2009), 6872–6877.

[39]

F. Sebastian, M. Salathe and V. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, Journal of the Royal Society Interface, (2010).

[40]

F. Sebastian, et al., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 10 (2015), 21–25.

[41]

I. Shingo, et al., A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259 (2009), 219–228. doi: 10.1016/j.jtbi.2009.03.040.

[42]

I. ShingoY. Takeuchi and X. Liu, Avian-human influenza epidemic model, Mathematical Bios., 207 (2007), 1-25. doi: 10.1016/j.mbs.2006.08.001.

[43]

I. ShingoY. Takeuchi and X. Liu, Avian flu pandemic: Can we prevent it?, Journal of Theoretical Biology, 257 (2009), 181-190. doi: 10.1016/j.jtbi.2008.11.011.

[44]

R. Shigui and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 188 (2003), 135-163. doi: 10.1016/S0022-0396(02)00089-X.

[45]

O. Sonja, Poultry-handling Practices during Avian Influenza Outbreak, Thailand, Emerging Infectious Disease journal, 11 (2005).

[46]

C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004), 1065-1089. doi: 10.3934/dcdsb.2004.4.1065.

[47]

M. Xinling and W. Wang, A discrete model of avian influenza with seasonal reproduction and transmission, Journal of Biological Dynamics, 4 (2010), 296-314. doi: 10.1080/17513751003793009.

[48]

X. Yanni, et al., Transmission potential of the novel avian influenza A (H7N9) infection in mainland China, Journal of Theoretical Biology, 352 (2014), 1–5. doi: 10.1016/j.jtbi.2014.02.038.

[49]

H. Ying-Hen, et al. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PloS One, 9 (2014), e111834.

[50]

J. Zhang, et al., Determination of original infection source of H7N9 avian influenza by dynamical model, Scientific Reports, 4 (2014), 48–46. doi: 10.1038/srep04846.

show all references

References:
[1]

Centers for Disease Control and Prevention (CDC), Types of influenza virus, http://www.cdc.gov/?u/about/viruses/types.htm

[2]

Centers for Disease Control and Prevention (CDC), Information on Avian Influenza, http://www.cdc.gov/?u/avian?u/index.htm.

[3]

Centers for Disease Control and Prevention (CDC), Influenza Type A Viruses, http://www.cdc.gov/flu/avianflu/influenza-avirus-subtypes.htm.

[4]

F. B. Agusto, Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems, 113 (2013), 155-164. doi: 10.1016/j.biosystems.2013.06.004.

[5]

F. B. AgustoS. Bewick and W. F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244-267. doi: 10.1016/j.idm.2017.05.003.

[6]

J. D. Alexander, An overview of the epidemiology of avian influenza, Vaccine, 25 (2007), 5637-5644.

[7]

B. S. T. AlkahtaniA. Atangana and I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191-3200. doi: 10.22436/jnsa.010.06.32.

[8]

B. S. T. AlkahtaniI. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Advances in Mechanical Engineering, 9 (2017), 1-8. doi: 10.1177/1687814017705566.

[9]

B. S. T. AlkahtaniA. Atangana and I. Koca, A new nonlinear triadic model of predatorrey based on derivative with non-local and non-singular kernel, Advances in Mechanical Engineering, 8 (2016), 1-17.

[10]

M. R. Anderson, M. M. Robert and B. Anderson, Infectious diseases of humans: Dynamics and control, Oxford: Oxford University Press, 28 (1992).

[11]

A. Atangana and E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Advances in Difference Equations, 2013 (2013), 14pp. doi: 10.1186/1687-1847-2013-94.

[12]

A. Atangana and B. S. T. Alkahtani, Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016), 442-451. doi: 10.1002/cplx.21704.

[13]

A. Atangana and R. T. Alqahtani, Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), p40. doi: 10.3390/e18020040.

[14]

C. T. Bauch and A. P. Galvani, Social factors in epidemiology, Science, 342 (2013), 47-49. doi: 10.1126/science.1244492.

[15]

G. Birkhoff and G. C. Rota, Ordinary differential equations, Introductions to Higher Mathematics Ginn and Company, Boston, Mass.-New York-Toronto, 1962.

[16]

L. Bourouiba, Lydia, et al. , The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71 (2011), 487–516. doi: 10.1137/100803110.

[17]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8.

[18]

C. Castillo-Chavez, et al, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, Springer, New York, 2002.

[19]

X. Dongmei and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025.

[20]

P. Van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[21]

N. Ferguson, Capturing human behaviour, Nature, 446 (2007), 733-733. doi: 10.1038/446733a.

[22]

S. A. GourleyR. Liu and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589-610. doi: 10.1137/090767261.

[23]

A. B. Gumel, Global dynamics of a two-strain avian influenza model, International Journal of Computer Mathematics, 86 (2009), 85-108. doi: 10.1080/00207160701769625.

[24]

H. GuoM. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Am. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[25]

L. Joseph, M. Roy and M. Martcheva, An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, Nova Science Publishers, New York, (2009), 1–30.

[26]

E. Jung, et al. Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220–229. doi: 10.1016/j.jtbi.2009.05.031.

[27]

J. M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.

[28]

J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematis, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1976.

[29]

J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976.

[30]

M.-T. LiZ. JinG. Q. Sun and J. Zhang, Modeling direct and indirect disease transmission using multi-group mode, J. Math. Anal. Appl., 446 (2017), 1292-1309. doi: 10.1016/j.jmaa.2016.09.043.

[31]

W. Liping, Human Exposure to Live Poultry and Psychological and Behavioral Responses to Influenza A (H7N9), China-Emerging Infectious Disease journal, 20 (2014).

[32]

S. Liu, L. Pang, S. Ruan and X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Comp. Math. Meth. Med., (2015), Art. ID 913726, 12 pp. doi: 10.1155/2015/913726.

[33]

W.-M. LiuA. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23 (1986), 187-204. doi: 10.1007/BF00276956.

[34]

T. Necibe and M. Martcheva, Modeling seasonality in avian influenza H5N1, Journal of Biological Systems, 21 (2013), 1340004, 30 pp. doi: 10.1142/S0218339013400044.

[35]

X. Nijuan, et al., Knowledge, attitudes and practices (KAP) relating to avian influenza in urban and rural areas of China, BMC Infectious Diseases, 10 (2010), 34.

[36]

K. M. Owolabi and A. Atangana, Spatiotemporal dynamics of fractional predatorrey system with stage structure for the predator, International Journal of Applied and Computational Mathematics, 3 (2017), S903-S924. doi: 10.1007/s40819-017-0389-2.

[37]

L. RongsongJ. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Computational and Mathematical Methods in Medicine, 8 (2007), 153-164. doi: 10.1080/17486700701425870.

[38]

F. Sebastian, et al., The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences, 106 (2009), 6872–6877.

[39]

F. Sebastian, M. Salathe and V. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, Journal of the Royal Society Interface, (2010).

[40]

F. Sebastian, et al., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 10 (2015), 21–25.

[41]

I. Shingo, et al., A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259 (2009), 219–228. doi: 10.1016/j.jtbi.2009.03.040.

[42]

I. ShingoY. Takeuchi and X. Liu, Avian-human influenza epidemic model, Mathematical Bios., 207 (2007), 1-25. doi: 10.1016/j.mbs.2006.08.001.

[43]

I. ShingoY. Takeuchi and X. Liu, Avian flu pandemic: Can we prevent it?, Journal of Theoretical Biology, 257 (2009), 181-190. doi: 10.1016/j.jtbi.2008.11.011.

[44]

R. Shigui and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 188 (2003), 135-163. doi: 10.1016/S0022-0396(02)00089-X.

[45]

O. Sonja, Poultry-handling Practices during Avian Influenza Outbreak, Thailand, Emerging Infectious Disease journal, 11 (2005).

[46]

C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004), 1065-1089. doi: 10.3934/dcdsb.2004.4.1065.

[47]

M. Xinling and W. Wang, A discrete model of avian influenza with seasonal reproduction and transmission, Journal of Biological Dynamics, 4 (2010), 296-314. doi: 10.1080/17513751003793009.

[48]

X. Yanni, et al., Transmission potential of the novel avian influenza A (H7N9) infection in mainland China, Journal of Theoretical Biology, 352 (2014), 1–5. doi: 10.1016/j.jtbi.2014.02.038.

[49]

H. Ying-Hen, et al. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PloS One, 9 (2014), e111834.

[50]

J. Zhang, et al., Determination of original infection source of H7N9 avian influenza by dynamical model, Scientific Reports, 4 (2014), 48–46. doi: 10.1038/srep04846.

Figure 1.  The behavior of infected individuals $I_h$, keeping $\alpha = m = 0.001$. Figure 1(a): varying $\beta_a$ and $\beta_h = 8\times 10^{-7}$ is fixed. Figure 1(b): varying $\beta_h$ and $\beta_a = 3\times 10^{-6}$ is fixed
Figure 2.  The behavior of infected individuals $I_h$ when $ \mathcal{R}_{0}>1$. Figure 2(a): $\alpha = m = 0$, Figure 2(b): $\alpha = m = 0.001$
Figure 3.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}>1$: Figure 3(a) when $\alpha = 0.001,~0.001,~0.01 $ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01 $ and $\alpha = 0.001$ fixed
Figure 4.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}<1$: Figure 4(a) when $\alpha = 0.001,~0.001,~0.01 $ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01 $ and $\alpha = 0.001$ fixed
Figure 5.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}<1$: $\alpha = 0.001,~0.01,~0.1$, $m = 0.001,~0.01,~0.1$
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[4]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[5]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[6]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[7]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[8]

Wenbo Cheng, Wanbiao Ma, Songbai Guo. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Communications on Pure & Applied Analysis, 2016, 15 (3) : 795-806. doi: 10.3934/cpaa.2016.15.795

[9]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[10]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[11]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[12]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[13]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[14]

Jacopo De Simoi. Stability and instability results in a model of Fermi acceleration. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 719-750. doi: 10.3934/dcds.2009.25.719

[15]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[16]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[17]

Jun Zhou. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857-885. doi: 10.3934/mbe.2016021

[18]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[19]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[20]

Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429-435. doi: 10.3934/mbe.2008.5.429

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (60)
  • HTML views (105)
  • Cited by (0)

[Back to Top]