April 2019, 12(2): ⅰ-ⅳ. doi: 10.3934/dcdss.201902i

Professor Vicenţiu Rǎdulescu celebrates his sixtieth anniversary

1. 

Department of Mathematics, Pisa University, Italy, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

2. 

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

3. 

Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy

Published  August 2018

Citation: Hugo Beirão da Veiga, Marius Ghergu, Alberto Valli. Professor Vicenţiu Rǎdulescu celebrates his sixtieth anniversary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201902i
References:
[1]

S. DumontL. DupaigneO. Goubet and V. D. Rǎdulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298. doi: 10.1515/ans-2007-0205.

[2]

L. DupaigneM. Ghergu and V. D. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007), 563-581. doi: 10.1016/j.matpur.2007.03.002.

[3]

R. FilippucciP. Pucci and V. D. Rǎdulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008), 706-717. doi: 10.1080/03605300701518208.

[4]

M. Ghergu and V.D. Rǎdulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003), 520-536. doi: 10.1016/S0022-0396(03)00105-0.

[5]

M. Ghergu and V. D. Rǎdulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 61-83. doi: 10.1017/S0308210500003760.

[6]

M. Ghergu and V. D. Rǎdulescu, A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1215-1234. doi: 10.1017/S0308210507000637.

[7]

M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008. ⅹⅵ+298 pp.

[8]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. ⅹⅷ+391 pp. doi: 10.1007/978-3-642-22664-9.

[9]

A. Kristàly, V. D. Rǎdulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010. ⅹⅵ+368 pp. doi: 10.1017/CBO9780511760631.

[10]

G. Molica-Bisci, V. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. ⅹⅵ+383 pp. doi: 10.1017/CBO9781316282397.

[11]

G. Molica Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008. doi: 10.1007/s00526-015-0891-5.

[12]

G. Molica Bisci and V. D. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Mathematics, 219 (2017), 331-351. doi: 10.1007/s11856-017-1482-2.

[13]

D. Motreanu and V. D. Rǎdulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003. ⅹⅱ+375 pp. doi: 10.1007/978-1-4757-6921-0.

[14]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010.

[15]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756. doi: 10.1090/S0002-9947-2014-06518-5.

[16]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., 33 (2017), 251-289. doi: 10.4171/RMI/936.

[17]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential, Calc. Var. Partial Differential Equations, 56 (2017), Art. 63, 23 pp. doi: 10.1007/s00526-017-1164-2.

[18]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290. doi: 10.1016/j.jde.2017.04.032.

[19]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Modern Nonlinear Analysis: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2018 (in press).

[20]

P. Pucci and V. D. Rǎdulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris, 348 (2010), 161-164. doi: 10.1016/j.crma.2010.01.013.

[21]

P. Pucci and V. D. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey., Boll. Unione Mat. Ital., 3 (2010), 543-582.

[22]

P. Pucci and V. D. Rǎdulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 189-205. doi: 10.4171/RLM/595.

[23]

P. Pucci, V. D. Rǎdulescu and H. Weinberger, James Serrin. Selected Papers, 2 volumes, 1718 pages, Contemporary Mathematicians, Birkhäuser, Basel, 2014.

[24]

V. D. Rǎdulescu, Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau, PhD Thesis, 29 June 1995, https://www.theses.fr/1995PA066189.

[25]

V. D. Rǎdulescu, Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ) with the mémoire: Analyse de quelques problèmes aux limites elliptiques non linéaires Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ), 18 February 2003.

[26]

V. D. Rǎdulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, 6. Hindawi Publishing Corporation, New York, 2008. ⅹⅱ+192 pp. doi: 10.1155/9789774540394.

[27]

V. D. Rǎdulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369. doi: 10.1016/j.na.2014.11.007.

[28]

V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.

[29]

V. D. RǎdulescuM. Xiang and B. Zhang, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413. doi: 10.1016/j.jde.2015.09.028.

[30]

V. D. RǎdulescuM. Xiang and B. Zhang, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 3186-3205. doi: 10.1088/0951-7715/29/10/3186.

[31]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems, Contemporary Mathematics, vol. 594, American Mathematical Society, 307 pp., 2013.

[32]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, vol. 595, American Mathematical Society, 340 pp., 2013. doi: 10.1090/conm/595.

show all references

References:
[1]

S. DumontL. DupaigneO. Goubet and V. D. Rǎdulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298. doi: 10.1515/ans-2007-0205.

[2]

L. DupaigneM. Ghergu and V. D. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007), 563-581. doi: 10.1016/j.matpur.2007.03.002.

[3]

R. FilippucciP. Pucci and V. D. Rǎdulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008), 706-717. doi: 10.1080/03605300701518208.

[4]

M. Ghergu and V.D. Rǎdulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003), 520-536. doi: 10.1016/S0022-0396(03)00105-0.

[5]

M. Ghergu and V. D. Rǎdulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 61-83. doi: 10.1017/S0308210500003760.

[6]

M. Ghergu and V. D. Rǎdulescu, A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1215-1234. doi: 10.1017/S0308210507000637.

[7]

M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008. ⅹⅵ+298 pp.

[8]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. ⅹⅷ+391 pp. doi: 10.1007/978-3-642-22664-9.

[9]

A. Kristàly, V. D. Rǎdulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010. ⅹⅵ+368 pp. doi: 10.1017/CBO9780511760631.

[10]

G. Molica-Bisci, V. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. ⅹⅵ+383 pp. doi: 10.1017/CBO9781316282397.

[11]

G. Molica Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008. doi: 10.1007/s00526-015-0891-5.

[12]

G. Molica Bisci and V. D. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Mathematics, 219 (2017), 331-351. doi: 10.1007/s11856-017-1482-2.

[13]

D. Motreanu and V. D. Rǎdulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003. ⅹⅱ+375 pp. doi: 10.1007/978-1-4757-6921-0.

[14]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010.

[15]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756. doi: 10.1090/S0002-9947-2014-06518-5.

[16]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., 33 (2017), 251-289. doi: 10.4171/RMI/936.

[17]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential, Calc. Var. Partial Differential Equations, 56 (2017), Art. 63, 23 pp. doi: 10.1007/s00526-017-1164-2.

[18]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290. doi: 10.1016/j.jde.2017.04.032.

[19]

N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Modern Nonlinear Analysis: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2018 (in press).

[20]

P. Pucci and V. D. Rǎdulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris, 348 (2010), 161-164. doi: 10.1016/j.crma.2010.01.013.

[21]

P. Pucci and V. D. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey., Boll. Unione Mat. Ital., 3 (2010), 543-582.

[22]

P. Pucci and V. D. Rǎdulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 189-205. doi: 10.4171/RLM/595.

[23]

P. Pucci, V. D. Rǎdulescu and H. Weinberger, James Serrin. Selected Papers, 2 volumes, 1718 pages, Contemporary Mathematicians, Birkhäuser, Basel, 2014.

[24]

V. D. Rǎdulescu, Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau, PhD Thesis, 29 June 1995, https://www.theses.fr/1995PA066189.

[25]

V. D. Rǎdulescu, Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ) with the mémoire: Analyse de quelques problèmes aux limites elliptiques non linéaires Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ), 18 February 2003.

[26]

V. D. Rǎdulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, 6. Hindawi Publishing Corporation, New York, 2008. ⅹⅱ+192 pp. doi: 10.1155/9789774540394.

[27]

V. D. Rǎdulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369. doi: 10.1016/j.na.2014.11.007.

[28]

V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.

[29]

V. D. RǎdulescuM. Xiang and B. Zhang, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413. doi: 10.1016/j.jde.2015.09.028.

[30]

V. D. RǎdulescuM. Xiang and B. Zhang, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 3186-3205. doi: 10.1088/0951-7715/29/10/3186.

[31]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems, Contemporary Mathematics, vol. 594, American Mathematical Society, 307 pp., 2013.

[32]

J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, vol. 595, American Mathematical Society, 340 pp., 2013. doi: 10.1090/conm/595.

[1]

Barbora Benešová, Martin Kružík. Tomáš Roubíček celebrates his sixtieth anniversary. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : ⅰ-ⅲ. doi: 10.3934/dcdss.201706i

[2]

Philip C. Kutzko. To Carlos on his sixtieth birthday: Greetings from your friends in Iowa. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1609-1610. doi: 10.3934/mbe.2013.10.1609

[3]

Luis Alberto Fernández, Mariano Mateos, Cecilia Pola, Fredi Tröltzsch, Enrique Zuazua. Preface: A tribute to professor Eduardo Casas on his 60th birthday. Mathematical Control & Related Fields, 2018, 8 (1) : i-ii. doi: 10.3934/mcrf.201801i

[4]

Hongwei Lou, Qi Lü, Gengsheng Wang, Xu Zhang. Preface: A tribute to professor Jiongmin Yong on his 60th birthday. Mathematical Control & Related Fields, 2018, 8 (3&4) : ⅰ-ⅰ. doi: 10.3934/mcrf.201803i

[5]

Hervé Le Dret, Vicenţiu D. Rădulescu, Roderick S. C. Wong. A tribute to Professor Philippe G. Ciarlet on his 70th birthday. Communications on Pure & Applied Analysis, 2009, 8 (1) : 1-4. doi: 10.3934/cpaa.2009.8.1

[6]

Hal L. Smith. Tribute to Horst R. Thieme on the occasion of his 60th birthday. Mathematical Biosciences & Engineering, 2010, 7 (1) : i-iii. doi: 10.3934/mbe.2010.7.1i

[7]

Xiaodong Hu. Biography of Professor Jiye Han. Journal of Industrial & Management Optimization, 2005, 1 (2) : 149-152. doi: 10.3934/jimo.2005.1.149

[8]

Roger Temam. Mark Vishik and his work. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : i-vi. doi: 10.3934/dcds.2004.10.1i

[9]

Marco Castrillón López, Antonio Fernández, César Rodrigo. A special tribute to Professor Pedro L. García. Journal of Geometric Mechanics, 2013, 5 (4) : i-iii. doi: 10.3934/jgm.2013.5.4i

[10]

Alexander A. Kovalevsky, Andrey Shishkov. To the memory of Professor Igor V. Skrypnik. Communications on Pure & Applied Analysis, 2013, 12 (4) : i-v. doi: 10.3934/cpaa.2013.12.4i

[11]

Jin Ma, Shige Peng, Jiongmin Yong, Xunyu Zhou. A biographical note and tribute to xunjing li on his 80th birthday. Mathematical Control & Related Fields, 2015, 5 (3) : i-iii. doi: 10.3934/mcrf.2015.5.3i

[12]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks & Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[13]

Goong Chen. David L. Russell and a survey of his mathematical work. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1265-1277. doi: 10.3934/dcdsb.2010.14.1265

[14]

Kung-Ching Chang. In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 571-575. doi: 10.3934/dcds.2016.36.571

[15]

Pierluigi Colli, Gianni Gilardi, Dietmar Hömberg, Pavel Krejčí, Elisabetta Rocca. Preface: Special issue dedicated to Jürgen Sprekels on the occasion of his 65th birthday. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : i-ii. doi: 10.3934/dcds.2015.35.6i

[16]

Victoria Rayskin. Homoclinic tangencies in $R^n$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 465-480. doi: 10.3934/dcds.2005.12.465

[17]

J. Becker, M. Ferreira, B.M.P.M. Oliveira, A.A. Pinto. R&d dynamics. Conference Publications, 2013, 2013 (special) : 61-68. doi: 10.3934/proc.2013.2013.61

[18]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[19]

Robert Stephen Cantrell, Suzanne Lenhart, Yuan Lou, Shigui Ruan. Preface on the special issue of Discrete and Continuous Dynamical Systems- Series B in honor of Chris Cosner on the occasion of his 60th birthday. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : i-ii. doi: 10.3934/dcdsb.2014.19.1i

[20]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (104)
  • HTML views (106)
  • Cited by (0)

[Back to Top]