December 2018, 11(6): 1103-1119. doi: 10.3934/dcdss.2018063

Linear openness and feedback stabilization of nonlinear control systems

1. 

Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, USA

2. 

Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA

3. 

Department of Mathematics and Computer Science, Lake Superior State University, Sault Ste. Marie, MI 49783, USA

4. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

5. 

RUDN University, Moscow 117198, Russia

Received  March 2017 Revised  July 2017 Published  June 2018

It is well known from the seminal Brockett's theorem that the openness property of the mapping on the right-hand side of a given nonlinear ODE control system is a necessary condition for the existence of locally asymptotically stabilizing continuous stationary feedback laws. However, this condition fails to be sufficient for such a feedback stabilization. In this paper we develop an approach of variational analysis to continuous feedback stabilization of nonlinear control systems with replacing openness by the linear openness property, which has been well understood and characterized in variational theory. It allows us, in particular, to obtain efficient conditions via the system data supporting the sufficiency in Brockett's theorem and ensuring local exponential stabilization by means of continuous stationary feedback laws. Furthermore, we derive new necessary conditions for local exponential and asymptotic stabilization of continuous-time control systems by using both continuous and continuously differentiable stationary feedback laws and establish also some counterparts of the obtained sufficient conditions for local asymptotic stabilization by continuous stationary feedback laws in the case of nonlinear discrete-time control systems.

Citation: Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063
References:
[1]

S. AdlyA. Hantoute and M. Théra, Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions, Nonlinear Anal., 75 (2012), 985-1008. doi: 10.1016/j.na.2010.11.009.

[2]

S. AdlyA. Hantoute and M. Théra, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Math. Program., 157 (2016), 349-374. doi: 10.1007/s10107-015-0938-6.

[3]

F. Alabau-BoussouiraJ.-M. Coron and G. Olive, Internal controllability of first order quasi-linear hyperbolic systems with a reduced number of controls, SIAM J. Control Optim., 55 (2017), 300-323. doi: 10.1137/15M1015765.

[4]

F. Ancona and A. Bressan, Patchy feedbacks for stabilization and optimal control: General theory and robustness properties, in Geometric Control and Nonsmooth Analysis (F. Ancona et al., eds.), World Sci. Publ., Hackensack, NJ, (2008), 28–64. doi: 10.1142/9789812776075_0002.

[5]

Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7 (1983), 1163-1173. doi: 10.1016/0362-546X(83)90049-4.

[6]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.

[7]

R. W. Brockett, Asymptotic stability and feedback stabilization, In Differential Geometric Control Theory (R. W. Brockett et al., eds.), Birkhäuser, Boston, MA, 27 (1983), 181–191.

[8]

C. I. Byrnes, On Brockett's necessary condition for stabilizability and the topology of Liapunov functions on $\mathbb{R}^N$, Commun. Inf. Syst., 8 (2008), 333-352. doi: 10.4310/CIS.2008.v8.n4.a1.

[9]

F. H. ClarkeYu. S. LedyaevE. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394-1407. doi: 10.1109/9.633828.

[10]

G. Colombo and K. T. Nguyen, On the minimum time function around the origin, Math. Control Related Fields, 3 (2013), 51-82. doi: 10.3934/mcrf.2013.3.51.

[11]

J.-M. Coron, A necessary condition for feedback stabilization, Syst. Control Lett., 14 (1990), 227-232. doi: 10.1016/0167-6911(90)90017-O.

[12]

J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI, 2007.

[13]

A. V. DmitrukA. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-51.

[14]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, Springer, New York, 2014. doi: 10.1007/978-1-4939-1037-3.

[15]

L. M. Graves, Some mapping theorems, Duke Math. J., 17 (1950), 111-114. doi: 10.1215/S0012-7094-50-01713-3.

[16]

M. L. J. Hautus, Stabilization, controllability and observability for linear autonomous systems, Indagationes Mathematicae (Proceedings), 32 (1970), 448-455.

[17]

H. Hermes, Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control Optim., 29 (1991), 185-196. doi: 10.1137/0329010.

[18]

M. Kawski, Stabilization of nonlinear systems on the plane, Syst. Control Lett., 12 (1989), 169-175. doi: 10.1016/0167-6911(89)90010-8.

[19]

M. A. Krasnoselskii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Moscow, 1975.

[20]

E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.

[21]

W. Lin and C. I. Byrnes, Design of discrete-time nonlinear control systems via smooth feedback, IEEE Trans. Autom. Control, 39 (1994), 2340-2346. doi: 10.1109/9.333790.

[22]

L. A. Lyusternik, On conditional extrema of functionals, Math. Sbornik, 41 (1934), 390-401.

[23]

B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), 1-35. doi: 10.1090/S0002-9947-1993-1156300-4.

[24]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions, Appl. Anal., 90 (2011), 1075-1109. doi: 10.1080/00036811003735840.

[25]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin, 2006.

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin, 2006.

[27]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[28]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York, 1998. doi: 10.1007/978-1-4612-0577-7.

[29]

W. Elmaghraby and P. Keskinocak, Dynamic pricing in the E. D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, In Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer, Dordrecht, The Netherlands, 528 (1999), 551–598.

[30]

H. J. SussmannE. D. Sontag and D. Y. Yang, A general result on the stabilization of linear systems using bounded controls, IEEE Trans. Automat. Control, 39 (1994), 2411-2425. doi: 10.1109/9.362853.

[31]

J. Zabczyk, Some comments on stabilizability, Appl. Math. Optim., 19 (1989), 1-9. doi: 10.1007/BF01448189.

show all references

References:
[1]

S. AdlyA. Hantoute and M. Théra, Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions, Nonlinear Anal., 75 (2012), 985-1008. doi: 10.1016/j.na.2010.11.009.

[2]

S. AdlyA. Hantoute and M. Théra, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Math. Program., 157 (2016), 349-374. doi: 10.1007/s10107-015-0938-6.

[3]

F. Alabau-BoussouiraJ.-M. Coron and G. Olive, Internal controllability of first order quasi-linear hyperbolic systems with a reduced number of controls, SIAM J. Control Optim., 55 (2017), 300-323. doi: 10.1137/15M1015765.

[4]

F. Ancona and A. Bressan, Patchy feedbacks for stabilization and optimal control: General theory and robustness properties, in Geometric Control and Nonsmooth Analysis (F. Ancona et al., eds.), World Sci. Publ., Hackensack, NJ, (2008), 28–64. doi: 10.1142/9789812776075_0002.

[5]

Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7 (1983), 1163-1173. doi: 10.1016/0362-546X(83)90049-4.

[6]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.

[7]

R. W. Brockett, Asymptotic stability and feedback stabilization, In Differential Geometric Control Theory (R. W. Brockett et al., eds.), Birkhäuser, Boston, MA, 27 (1983), 181–191.

[8]

C. I. Byrnes, On Brockett's necessary condition for stabilizability and the topology of Liapunov functions on $\mathbb{R}^N$, Commun. Inf. Syst., 8 (2008), 333-352. doi: 10.4310/CIS.2008.v8.n4.a1.

[9]

F. H. ClarkeYu. S. LedyaevE. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394-1407. doi: 10.1109/9.633828.

[10]

G. Colombo and K. T. Nguyen, On the minimum time function around the origin, Math. Control Related Fields, 3 (2013), 51-82. doi: 10.3934/mcrf.2013.3.51.

[11]

J.-M. Coron, A necessary condition for feedback stabilization, Syst. Control Lett., 14 (1990), 227-232. doi: 10.1016/0167-6911(90)90017-O.

[12]

J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI, 2007.

[13]

A. V. DmitrukA. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-51.

[14]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, Springer, New York, 2014. doi: 10.1007/978-1-4939-1037-3.

[15]

L. M. Graves, Some mapping theorems, Duke Math. J., 17 (1950), 111-114. doi: 10.1215/S0012-7094-50-01713-3.

[16]

M. L. J. Hautus, Stabilization, controllability and observability for linear autonomous systems, Indagationes Mathematicae (Proceedings), 32 (1970), 448-455.

[17]

H. Hermes, Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control Optim., 29 (1991), 185-196. doi: 10.1137/0329010.

[18]

M. Kawski, Stabilization of nonlinear systems on the plane, Syst. Control Lett., 12 (1989), 169-175. doi: 10.1016/0167-6911(89)90010-8.

[19]

M. A. Krasnoselskii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Moscow, 1975.

[20]

E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967.

[21]

W. Lin and C. I. Byrnes, Design of discrete-time nonlinear control systems via smooth feedback, IEEE Trans. Autom. Control, 39 (1994), 2340-2346. doi: 10.1109/9.333790.

[22]

L. A. Lyusternik, On conditional extrema of functionals, Math. Sbornik, 41 (1934), 390-401.

[23]

B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), 1-35. doi: 10.1090/S0002-9947-1993-1156300-4.

[24]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions, Appl. Anal., 90 (2011), 1075-1109. doi: 10.1080/00036811003735840.

[25]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin, 2006.

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin, 2006.

[27]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[28]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York, 1998. doi: 10.1007/978-1-4612-0577-7.

[29]

W. Elmaghraby and P. Keskinocak, Dynamic pricing in the E. D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, In Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer, Dordrecht, The Netherlands, 528 (1999), 551–598.

[30]

H. J. SussmannE. D. Sontag and D. Y. Yang, A general result on the stabilization of linear systems using bounded controls, IEEE Trans. Automat. Control, 39 (1994), 2411-2425. doi: 10.1109/9.362853.

[31]

J. Zabczyk, Some comments on stabilizability, Appl. Math. Optim., 19 (1989), 1-9. doi: 10.1007/BF01448189.

[1]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[2]

Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67

[3]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[4]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[5]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[6]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[7]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[8]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

[9]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[10]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[11]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[12]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[13]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[14]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[15]

Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319

[16]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

[17]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[18]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[19]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[20]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

2017 Impact Factor: 0.561

Article outline

[Back to Top]