December 2018, 11(6): 1011-1029. doi: 10.3934/dcdss.2018059

Weak solutions of stochastic reaction diffusion equations and their optimal control

EECS, University of Ottawa, Ottawa, K1N6N5, Canada

* Corresponding author: N.U.Ahmed

Received  January 2017 Revised  March 2017 Published  June 2018

Fund Project: The author is supported by NSERC grant A7109

In this paper we consider a class of stochastic reaction diffusion equations with polynomial nonlinearities. We prove existence and uniqueness of weak solutions and their regularity properties. We introduce a suitable topology on the space of stochastic relaxed controls and prove continuous dependence of solutions on controls with respect to this topology and the norm topology on the natural space of solutions. Also we prove that the attainable set of measures induced by the weak solutions is weakly compact. Then we consider some optimal control problems, including the Bolza problem, and some target seeking problems in terms of the attainable sets in the space of measures and prove existence of optimal controls. In the concluding section we present briefly some extensions of the results presented here.

Citation: N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059
References:
[1]

R. A. Adams, Sobolev Spaces, Academic press, New York-London, 1975.

[2]

N. U. Ahmed, Optimal Control of reaction diffusion equations with potential applications to biomedical systems, Journal of Abstract Differential Equations and Applications, 8 (2017), 48-70.

[3]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems, Elsevier, North Holland, New York, Oxford, 1981.

[4]

N. U. Ahmed, Elements of Finite Dimensional Systems and Control Theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 37, Longman Scientific and Technical, U. K., 1988.

[5]

N. U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces, Pitman Research Notes in Mathematics Series, 184. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988.

[6]

P. L. Chow, Explosive solutions of stochastic reaction diffusion equations in mean $L_p$-norm, Journal of Differential equations, 250 (2011), 2567-2580. doi: 10.1016/j.jde.2010.11.008.

[7]

J. Diestel and J. J. Uhl. Jr. Vector Measures, Mathematical Surveys and Monographs, AMS, Providence, R. I., 1977.

[8]

N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.

[9]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity 1, Communication in Pure and Applied Mathematics, 69 (2016), 981-1014. doi: 10.1002/cpa.21596.

[10]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition, The Annals of Applied Probability, 9 (1999), 1226-1259. doi: 10.1214/aoap/1029962871.

[11]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967.

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, (2nd Ed.), Springer Science and Business Media, LLC, 1994. doi: 10.1007/978-1-4612-0873-0.

[13]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer- Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1988. doi: 10.1007/978-1-4684-0313-8.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic press, New York-London, 1975.

[2]

N. U. Ahmed, Optimal Control of reaction diffusion equations with potential applications to biomedical systems, Journal of Abstract Differential Equations and Applications, 8 (2017), 48-70.

[3]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems, Elsevier, North Holland, New York, Oxford, 1981.

[4]

N. U. Ahmed, Elements of Finite Dimensional Systems and Control Theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 37, Longman Scientific and Technical, U. K., 1988.

[5]

N. U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces, Pitman Research Notes in Mathematics Series, 184. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988.

[6]

P. L. Chow, Explosive solutions of stochastic reaction diffusion equations in mean $L_p$-norm, Journal of Differential equations, 250 (2011), 2567-2580. doi: 10.1016/j.jde.2010.11.008.

[7]

J. Diestel and J. J. Uhl. Jr. Vector Measures, Mathematical Surveys and Monographs, AMS, Providence, R. I., 1977.

[8]

N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.

[9]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity 1, Communication in Pure and Applied Mathematics, 69 (2016), 981-1014. doi: 10.1002/cpa.21596.

[10]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition, The Annals of Applied Probability, 9 (1999), 1226-1259. doi: 10.1214/aoap/1029962871.

[11]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967.

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, (2nd Ed.), Springer Science and Business Media, LLC, 1994. doi: 10.1007/978-1-4612-0873-0.

[13]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer- Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1988. doi: 10.1007/978-1-4684-0313-8.

[1]

Kim Dang Phung, Gengsheng Wang, Xu Zhang. On the existence of time optimal controls for linear evolution equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 925-941. doi: 10.3934/dcdsb.2007.8.925

[2]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[3]

Monica Motta, Caterina Sartori. Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 595-613. doi: 10.3934/dcds.2011.29.595

[4]

Michele Palladino, Richard B. Vinter. When are minimizing controls also minimizing relaxed controls?. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4573-4592. doi: 10.3934/dcds.2015.35.4573

[5]

Kerem Uǧurlu. Continuity of cost functional and optimal feedback controls for the stochastic Navier Stokes equation in 2D. Communications on Pure & Applied Analysis, 2017, 16 (1) : 189-208. doi: 10.3934/cpaa.2017009

[6]

Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

[7]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[8]

Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99

[9]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[10]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[11]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[12]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[13]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[14]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[15]

Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319

[16]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[17]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[18]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[19]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[20]

Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 537-567. doi: 10.3934/dcds.2007.18.537

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (48)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]