2018, 11(4): 747-757. doi: 10.3934/dcdss.2018047

Differential invariants of a generalized variable-coefficient Gardner equation

Departamento de Matemáticas, Universidad de Cádiz, P.O. Box 40, Puerto Real 11510, Cádiz, Spain

* Corresponding author: M.S. Bruzón

Received  December 2016 Revised  May 2017 Published  November 2017

In this paper, we consider a generalized variable-coefficient Gardner equation. By using the equivalence group of this equation, we derive the differential invariants of first order and the corresponding invariant equations. We employ these differential invariants and invariant equations to find the most general subclass of variable-coefficient Gardner equations which can be mapped into a specific constant-coefficient equation by means of an equivalence transformation. Furthermore, differential invariants are applied to obtain exact solutions.

Citation: Rafael de la Rosa, María Santos Bruzón. Differential invariants of a generalized variable-coefficient Gardner equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 747-757. doi: 10.3934/dcdss.2018047
References:
[1]

K. R. Adem, C. M. Khalique, Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity, Nonlinear Anal. RWA, 13 (2012), 1692-1702. doi: 10.1016/j.nonrwa.2011.12.001.

[2]

Y. Y. Bagderina, Invariants of a family of third-order ordinary differential equations, J. Phys. A: Math. Theor. , 42 (2009), 085204, 21pp. doi: 10.1088/1751-8113/42/8/085204.

[3]

Y. Y. Bagderina, Symmetries and invariants of the systems of two linear second-order ordinary differential equations, Commun Nonlinear Sci Numer Simulat, 19 (2014), 3513-3522. doi: 10.1016/j.cnsns.2014.02.023.

[4]

M. S. Bruzón, M. L. Gandarias, M. Senthilvelan, On the nonlocal symmetries of certain nonlinear oscillators and their general solution, Physics Letters A, 375 (2011), 2985-2987. doi: 10.1016/j.physleta.2011.06.036.

[5]

R. de la Rosa, M. L. Gandarias, M. S. Bruzón, Symmetries and conservation laws of a fifth-order KdV equation with time-dependent coefficients and linear damping, Nonlinear Dyn, 84 (2016), 135-141. doi: 10.1007/s11071-015-2254-3.

[6]

R. de la Rosa, M. L. Gandarias, M. S. Bruzón, Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation, Commun Nonlinear Sci Numer Simulat, 40 (2016), 71-79. doi: 10.1016/j.cnsns.2016.04.009.

[7]

R. de la Rosa, M. S. Bruzón, On the classical and nonclassical symmetries of a generalized Gardner equation, Applied Mathematics and Nonlinear Sciences, 1 (2016), 263-272.

[8]

M. L. Gandarias, N. H. Ibragimov, Equivalence group of a fourth-order evolution equation unifying various non-linear models, Commun Nonlinear Sci Numer Simulat, 13 (2008), 259-268. doi: 10.1016/j.cnsns.2005.12.011.

[9]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley & Sons, New York, 1999.

[10]

N. H. Ibragimov, Invariants of a remarkable family of nonlinear equations, Nonlinear Dyn, 30 (2002), 155-166. doi: 10.1023/A:1020406015011.

[11]

A. G. Johnpillai, C. M. Khalique, Gruop analysis of KdV equation with time dependent coefficients, Applied Mathematics and Computation, 216 (2010), 3761-3771. doi: 10.1016/j.amc.2010.05.043.

[12]

A. G. Johnpillai, C. M. Khalique, Conservation laws of KdV equation with time dependent coefficients, Commun Nonlinear Sci Numer Simulat, 16 (2011), 3081-3089. doi: 10.1016/j.cnsns.2010.10.031.

[13]

A. G. Johnpillai, C. M. Khalique, Lie group classification and invariant solutions of mKdV equation with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1207-1215. doi: 10.1016/j.cnsns.2010.06.025.

[14]

N. A. Kudryashov, D. I. Sinelshchikov, A note on the Lie symmetry analysis and exact solutions for the extended mKdV equation, Acta. Appl. Math., 113 (2011), 41-44. doi: 10.1007/s10440-010-9582-6.

[15]

M. Lakshmanan, K. M. Tamizhmani, Lie-Bäcklund symmetries of certain nonlinear evolution equations under perturbation around their solutions, J. Math. Phys., 26 (1985), 1189-1200. doi: 10.1063/1.526524.

[16]

X. Li, M. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, 361 (2007), 115-118. doi: 10.1016/j.physleta.2006.09.022.

[17]

S. Lie, Über Differentialinvarianten, Math. Ann., 24 (1884), 537-578. doi: 10.1007/BF01447449.

[18]

S. Lie, Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten Ⅰ, Ⅱ, Math. Ann., 32 (1888), 213-281. doi: 10.1007/BF01444068.

[19]

H. Liu, J. Li, Lie symmetry analysis and exact solutions for the extended mKdV equation, Acta. Appl. Math., 109 (2010), 1107-1119. doi: 10.1007/s10440-008-9362-8.

[20]

R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209. doi: 10.1063/1.1664701.

[21]

R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Review, 18 (1976), 412-459. doi: 10.1137/1018076.

[22]

M. Molati, M. P. Ramollo, Symmetry classification of the Gardner equation with time-dependent coefficients arising in stratified fluids, Commun Nonlinear Sci Numer Simulat, 17 (2012), 1542-1548. doi: 10.1016/j.cnsns.2011.09.002.

[23]

P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511609565.

[24]

L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.

[25]

R. O. Popovych, N. M. Ivanova, New results on group classification of nonlinear diffusion-convection equations, J. Phys. A: Math. Gen., 37 (2004), 7547-7565. doi: 10.1088/0305-4470/37/30/011.

[26]

M. Rosa, M. S. Bruzón, M. L. Gandarias, Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term, Discrete and Continuous Dynamical Systems -Series S, 8 (2015), 1331-1339. doi: 10.3934/dcdss.2015.8.1331.

[27]

M. Senthilvelan, M. Torrisi, A. Valenti, Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 39 (2006), 3703-3713. doi: 10.1088/0305-4470/39/14/013.

[28]

C. Sophocleous, R. Traciná, Differential invariants for quasi-linear and semi-linear wave-type equations, Applied Mathematics and Computation, 202 (2008), 216-228. doi: 10.1016/j.amc.2008.01.033.

[29]

M. Torrisi, R. Traciná, A. Valenti, On the linearization of semilinear wave equations, Nonlinear Dyn, 36 (2004), 97-106. doi: 10.1023/B:NODY.0000034649.74389.09.

[30]

R. Traciná, Invariants of a family of nonlinear wave equations, Commun Nonlinear Sci Numer Simulat, 9 (2004), 127-133. doi: 10.1016/S1007-5704(03)00021-2.

[31]

C. Tsaousi, C. Sophocleous, Differential invariants for systems of linear hyperbolic equations, J. Math. Anal. Appl., 363 (2010), 238-248. doi: 10.1016/j.jmaa.2009.08.023.

[32]

C. Tsaousi, R. Traciná, C. Sophocleous, Differential invariants for third-order evolution equations, Commun Nonlinear Sci Numer Simulat, 20 (2015), 352-359. doi: 10.1016/j.cnsns.2014.05.024.

[33]

O. Vaneeva, O. Popovych, C. Sophocleous, Equivalence transformations in the study of integrability, Phys. Scr., 89 (2014), 038003-038012. doi: 10.1088/0031-8949/89/03/038003.

[34]

O. Vaneeva, O. Kuriksha, C. Sophocleous, Enhanced group classification of Gardner equations with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat, 22 (2015), 1243-1251. doi: 10.1016/j.cnsns.2014.09.016.

[35]

E. Yomba, The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrödinger equations, Phys. Lett. A, 372 (2008), 215-222. doi: 10.1016/j.physleta.2007.03.008.

show all references

References:
[1]

K. R. Adem, C. M. Khalique, Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity, Nonlinear Anal. RWA, 13 (2012), 1692-1702. doi: 10.1016/j.nonrwa.2011.12.001.

[2]

Y. Y. Bagderina, Invariants of a family of third-order ordinary differential equations, J. Phys. A: Math. Theor. , 42 (2009), 085204, 21pp. doi: 10.1088/1751-8113/42/8/085204.

[3]

Y. Y. Bagderina, Symmetries and invariants of the systems of two linear second-order ordinary differential equations, Commun Nonlinear Sci Numer Simulat, 19 (2014), 3513-3522. doi: 10.1016/j.cnsns.2014.02.023.

[4]

M. S. Bruzón, M. L. Gandarias, M. Senthilvelan, On the nonlocal symmetries of certain nonlinear oscillators and their general solution, Physics Letters A, 375 (2011), 2985-2987. doi: 10.1016/j.physleta.2011.06.036.

[5]

R. de la Rosa, M. L. Gandarias, M. S. Bruzón, Symmetries and conservation laws of a fifth-order KdV equation with time-dependent coefficients and linear damping, Nonlinear Dyn, 84 (2016), 135-141. doi: 10.1007/s11071-015-2254-3.

[6]

R. de la Rosa, M. L. Gandarias, M. S. Bruzón, Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation, Commun Nonlinear Sci Numer Simulat, 40 (2016), 71-79. doi: 10.1016/j.cnsns.2016.04.009.

[7]

R. de la Rosa, M. S. Bruzón, On the classical and nonclassical symmetries of a generalized Gardner equation, Applied Mathematics and Nonlinear Sciences, 1 (2016), 263-272.

[8]

M. L. Gandarias, N. H. Ibragimov, Equivalence group of a fourth-order evolution equation unifying various non-linear models, Commun Nonlinear Sci Numer Simulat, 13 (2008), 259-268. doi: 10.1016/j.cnsns.2005.12.011.

[9]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley & Sons, New York, 1999.

[10]

N. H. Ibragimov, Invariants of a remarkable family of nonlinear equations, Nonlinear Dyn, 30 (2002), 155-166. doi: 10.1023/A:1020406015011.

[11]

A. G. Johnpillai, C. M. Khalique, Gruop analysis of KdV equation with time dependent coefficients, Applied Mathematics and Computation, 216 (2010), 3761-3771. doi: 10.1016/j.amc.2010.05.043.

[12]

A. G. Johnpillai, C. M. Khalique, Conservation laws of KdV equation with time dependent coefficients, Commun Nonlinear Sci Numer Simulat, 16 (2011), 3081-3089. doi: 10.1016/j.cnsns.2010.10.031.

[13]

A. G. Johnpillai, C. M. Khalique, Lie group classification and invariant solutions of mKdV equation with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1207-1215. doi: 10.1016/j.cnsns.2010.06.025.

[14]

N. A. Kudryashov, D. I. Sinelshchikov, A note on the Lie symmetry analysis and exact solutions for the extended mKdV equation, Acta. Appl. Math., 113 (2011), 41-44. doi: 10.1007/s10440-010-9582-6.

[15]

M. Lakshmanan, K. M. Tamizhmani, Lie-Bäcklund symmetries of certain nonlinear evolution equations under perturbation around their solutions, J. Math. Phys., 26 (1985), 1189-1200. doi: 10.1063/1.526524.

[16]

X. Li, M. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, 361 (2007), 115-118. doi: 10.1016/j.physleta.2006.09.022.

[17]

S. Lie, Über Differentialinvarianten, Math. Ann., 24 (1884), 537-578. doi: 10.1007/BF01447449.

[18]

S. Lie, Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten Ⅰ, Ⅱ, Math. Ann., 32 (1888), 213-281. doi: 10.1007/BF01444068.

[19]

H. Liu, J. Li, Lie symmetry analysis and exact solutions for the extended mKdV equation, Acta. Appl. Math., 109 (2010), 1107-1119. doi: 10.1007/s10440-008-9362-8.

[20]

R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209. doi: 10.1063/1.1664701.

[21]

R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Review, 18 (1976), 412-459. doi: 10.1137/1018076.

[22]

M. Molati, M. P. Ramollo, Symmetry classification of the Gardner equation with time-dependent coefficients arising in stratified fluids, Commun Nonlinear Sci Numer Simulat, 17 (2012), 1542-1548. doi: 10.1016/j.cnsns.2011.09.002.

[23]

P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511609565.

[24]

L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.

[25]

R. O. Popovych, N. M. Ivanova, New results on group classification of nonlinear diffusion-convection equations, J. Phys. A: Math. Gen., 37 (2004), 7547-7565. doi: 10.1088/0305-4470/37/30/011.

[26]

M. Rosa, M. S. Bruzón, M. L. Gandarias, Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term, Discrete and Continuous Dynamical Systems -Series S, 8 (2015), 1331-1339. doi: 10.3934/dcdss.2015.8.1331.

[27]

M. Senthilvelan, M. Torrisi, A. Valenti, Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 39 (2006), 3703-3713. doi: 10.1088/0305-4470/39/14/013.

[28]

C. Sophocleous, R. Traciná, Differential invariants for quasi-linear and semi-linear wave-type equations, Applied Mathematics and Computation, 202 (2008), 216-228. doi: 10.1016/j.amc.2008.01.033.

[29]

M. Torrisi, R. Traciná, A. Valenti, On the linearization of semilinear wave equations, Nonlinear Dyn, 36 (2004), 97-106. doi: 10.1023/B:NODY.0000034649.74389.09.

[30]

R. Traciná, Invariants of a family of nonlinear wave equations, Commun Nonlinear Sci Numer Simulat, 9 (2004), 127-133. doi: 10.1016/S1007-5704(03)00021-2.

[31]

C. Tsaousi, C. Sophocleous, Differential invariants for systems of linear hyperbolic equations, J. Math. Anal. Appl., 363 (2010), 238-248. doi: 10.1016/j.jmaa.2009.08.023.

[32]

C. Tsaousi, R. Traciná, C. Sophocleous, Differential invariants for third-order evolution equations, Commun Nonlinear Sci Numer Simulat, 20 (2015), 352-359. doi: 10.1016/j.cnsns.2014.05.024.

[33]

O. Vaneeva, O. Popovych, C. Sophocleous, Equivalence transformations in the study of integrability, Phys. Scr., 89 (2014), 038003-038012. doi: 10.1088/0031-8949/89/03/038003.

[34]

O. Vaneeva, O. Kuriksha, C. Sophocleous, Enhanced group classification of Gardner equations with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat, 22 (2015), 1243-1251. doi: 10.1016/j.cnsns.2014.09.016.

[35]

E. Yomba, The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrödinger equations, Phys. Lett. A, 372 (2008), 215-222. doi: 10.1016/j.physleta.2007.03.008.

Table 1.  Solutions of equation (31), $\Delta=\beta^2-4\alpha \gamma$, $\epsilon=\pm 1$.
$j$ $F_j(z)$
$1$ $\frac{2 \epsilon \alpha\,\mbox{sech}(\sqrt{\alpha}z)}{\sqrt{\Delta}- \epsilon \beta \mbox{sech}(\sqrt{\alpha}z)}, \, \alpha>0, \Delta>0$
$2$ $\frac{2 \epsilon \alpha\,\mbox{csch}(\sqrt{\alpha}z)}{\sqrt{-\Delta}-\epsilon \beta \mbox{csch}(\sqrt{\alpha}z)}, \, \alpha>0, \Delta <0$
$3$ $-\frac{\alpha}{\beta}\left[ 1\pm \mbox{tanh}(\frac{\sqrt{\alpha}}{2}z)\right], \, \alpha>0, \Delta =0$
$4$ $-\frac{\alpha}{\beta}\left[ 1\pm \mbox{coth}(\frac{\sqrt{\alpha}}{2}z)\right], \, \alpha>0, \Delta =0$
$j$ $F_j(z)$
$1$ $\frac{2 \epsilon \alpha\,\mbox{sech}(\sqrt{\alpha}z)}{\sqrt{\Delta}- \epsilon \beta \mbox{sech}(\sqrt{\alpha}z)}, \, \alpha>0, \Delta>0$
$2$ $\frac{2 \epsilon \alpha\,\mbox{csch}(\sqrt{\alpha}z)}{\sqrt{-\Delta}-\epsilon \beta \mbox{csch}(\sqrt{\alpha}z)}, \, \alpha>0, \Delta <0$
$3$ $-\frac{\alpha}{\beta}\left[ 1\pm \mbox{tanh}(\frac{\sqrt{\alpha}}{2}z)\right], \, \alpha>0, \Delta =0$
$4$ $-\frac{\alpha}{\beta}\left[ 1\pm \mbox{coth}(\frac{\sqrt{\alpha}}{2}z)\right], \, \alpha>0, \Delta =0$
Table 2.  Solutions of equation (32), $\Delta=\beta^2-4\alpha \gamma$, $\epsilon=\pm 1$.
$i$ $F_i(z)$
$1$ $\left[\frac{-\alpha\beta\,\mbox{sech}^2(\sqrt{\alpha}z)}{\beta^2-\alpha\gamma(1+\epsilon \mbox{tanh}(\sqrt{\alpha}z))^2}\right]^{1/2}, \, \alpha>0$
$2$ $\left[\frac{\alpha\beta\,\mbox{csch}^2(\sqrt{\alpha}z)}{\beta^2-\alpha\gamma(1+\epsilon \mbox{coth}(\sqrt{\alpha}z))^2}\right]^{1/2},\, \alpha>0$
$3$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{cosh}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha>0, \Delta >0$
$4$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{cos}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha <0, \Delta >0$
$5$ $\left[\frac{2\alpha}{\epsilon \sqrt{-\Delta} \mbox{sinh}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha>0, \Delta <0$
$6$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{sin}(2\sqrt{-\alpha}z)-\beta}\right]^{1/2}, \, \alpha <0, \Delta >0$
$7$ $\left[\frac{-\alpha\,\mbox{sech}^2(\sqrt{\alpha}z)}{\beta+2\epsilon \sqrt{\alpha\gamma}\mbox{tanh}(\sqrt{\alpha}z)}\right]^{1/2}, \, \alpha>0, \gamma >0$
$8$ $\left[\frac{-\alpha\,\mbox{sec}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{-\alpha\gamma} \mbox{tan}(\sqrt{-\alpha}z)}\right]^{1/2}, \alpha <0, \gamma>0$
$9$ $\left[\frac{\alpha\,\mbox{csch}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{\alpha\gamma} \mbox{coth}(\sqrt{\alpha}z)}\right]^{1/2}, \alpha>0, \gamma>0$
$10$ $\left[\frac{-\alpha\,\mbox{csc}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{-\alpha\gamma} \mbox{cot}(\sqrt{-\alpha}z)}\right]^{1/2}\, \alpha <0, \gamma>0$
$11$ $\left[-\frac{\alpha}{\beta} (1+\epsilon\mbox{tanh}(\frac{\sqrt{\alpha}}{2}z))\right]^{1/2}\, \alpha>0, \Delta=0$
$12$ $\left[-\frac{\alpha}{\beta} (1+\epsilon\mbox{coth}(\frac{\sqrt{\alpha}}{2}z))\right]^{1/2}\, \alpha>0, \Delta=0$
$13$ $4\left[\frac{\alpha e^{2\epsilon\sqrt{\alpha}z}}{(e^{2\epsilon\sqrt{\alpha}z}-4\beta)^2-64\alpha\gamma} \right]^{1/2}, \, \alpha>0$
$i$ $F_i(z)$
$1$ $\left[\frac{-\alpha\beta\,\mbox{sech}^2(\sqrt{\alpha}z)}{\beta^2-\alpha\gamma(1+\epsilon \mbox{tanh}(\sqrt{\alpha}z))^2}\right]^{1/2}, \, \alpha>0$
$2$ $\left[\frac{\alpha\beta\,\mbox{csch}^2(\sqrt{\alpha}z)}{\beta^2-\alpha\gamma(1+\epsilon \mbox{coth}(\sqrt{\alpha}z))^2}\right]^{1/2},\, \alpha>0$
$3$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{cosh}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha>0, \Delta >0$
$4$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{cos}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha <0, \Delta >0$
$5$ $\left[\frac{2\alpha}{\epsilon \sqrt{-\Delta} \mbox{sinh}(2\sqrt{\alpha}z)-\beta}\right]^{1/2}, \, \alpha>0, \Delta <0$
$6$ $\left[\frac{2\alpha}{\epsilon \sqrt{\Delta} \mbox{sin}(2\sqrt{-\alpha}z)-\beta}\right]^{1/2}, \, \alpha <0, \Delta >0$
$7$ $\left[\frac{-\alpha\,\mbox{sech}^2(\sqrt{\alpha}z)}{\beta+2\epsilon \sqrt{\alpha\gamma}\mbox{tanh}(\sqrt{\alpha}z)}\right]^{1/2}, \, \alpha>0, \gamma >0$
$8$ $\left[\frac{-\alpha\,\mbox{sec}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{-\alpha\gamma} \mbox{tan}(\sqrt{-\alpha}z)}\right]^{1/2}, \alpha <0, \gamma>0$
$9$ $\left[\frac{\alpha\,\mbox{csch}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{\alpha\gamma} \mbox{coth}(\sqrt{\alpha}z)}\right]^{1/2}, \alpha>0, \gamma>0$
$10$ $\left[\frac{-\alpha\,\mbox{csc}^2(\sqrt{-\alpha}z)}{\beta+2\epsilon \sqrt{-\alpha\gamma} \mbox{cot}(\sqrt{-\alpha}z)}\right]^{1/2}\, \alpha <0, \gamma>0$
$11$ $\left[-\frac{\alpha}{\beta} (1+\epsilon\mbox{tanh}(\frac{\sqrt{\alpha}}{2}z))\right]^{1/2}\, \alpha>0, \Delta=0$
$12$ $\left[-\frac{\alpha}{\beta} (1+\epsilon\mbox{coth}(\frac{\sqrt{\alpha}}{2}z))\right]^{1/2}\, \alpha>0, \Delta=0$
$13$ $4\left[\frac{\alpha e^{2\epsilon\sqrt{\alpha}z}}{(e^{2\epsilon\sqrt{\alpha}z}-4\beta)^2-64\alpha\gamma} \right]^{1/2}, \, \alpha>0$
[1]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[2]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[3]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[4]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[5]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[6]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[7]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with Lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[8]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[9]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[10]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[11]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[12]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[13]

Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control & Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011

[14]

Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27

[15]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[16]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 295-313. doi: 10.3934/dcds.2007.18.295

[17]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[18]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[19]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[20]

Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111

2016 Impact Factor: 0.781

Article outline

Figures and Tables

[Back to Top]