• Previous Article
    Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry
  • DCDS-S Home
  • This Issue
  • Next Article
    A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation
2018, 11(4): 675-689. doi: 10.3934/dcdss.2018042

Nonlocal and nonvariational extensions of Killing-type equations

Università di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, via delle Scienze 208, 33100 Udine, Italy

Università di Verona, Dipartimento di Informatica, strada Le Grazie 15, 37134 Verona, Italy

* Corresponding author: Gaetano Zampieri.

Received  November 2016 Revised  May 2017 Published  November 2017

The Killing-like equation and the inverse Noether theorem arise in connection with the search for first integrals of Lagrangian systems. We generalize the theory to include "nonlocal" constants of motion of the form $N_0+∈t N_1\, dt$, and also to nonvariational Lagrangian systems $\frac{d}{dt}\partial_{\dot q}L-\partial_qL=Q$. As examples we study nonlocal constants of motion for the Lane-Emden system, for the dissipative Maxwell-Bloch system and for the particle in a homogeneous potential.

Citation: Gianluca Gorni, Gaetano Zampieri. Nonlocal and nonvariational extensions of Killing-type equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 675-689. doi: 10.3934/dcdss.2018042
References:
[1]

F. T. Arecchi and R. Meucci, Chaos in lasers, Scholarpedia, 3 (2008), 7066. doi: 10.4249/scholarpedia.7066.

[2]

L. Y. Bahar, H. G. Kwatny, Extension of Noether's theorem to constrained non-conservative dynamical systems, Int. J. Non-Linear Mechanics, 22 (1987), 125-138. doi: 10.1016/0020-7462(87)90015-1.

[3]

F. Calogero, Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys, 12 (1971), 419-436. doi: 10.1063/1.1665604.

[4]

E. Candotti, C. Palmieri, B. Vitale, On the inversion of Noether's theorem in classical dynamical systems, Am. J. Phys., 40 (1972), 424-429. doi: 10.1119/1.1986566.

[5]

D. S. Djukic, A procedure for finding first integrals of mechanical systems with gauge-variant Lagrangians, Internat. J. Non-Linear Mech., 8 (1973), 479-488. doi: 10.1016/0020-7462(73)90039-5.

[6]

D. S. Djukic, B. D. Vujanovic, Noether's theory in classical nonconservative mechanics, Acta Mechanica, 23 (1975), 17-27. doi: 10.1007/BF01177666.

[7]

G. Gorni, G. Zampieri, Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73. doi: 10.1080/14029251.2014.894720.

[8]

G. Gorni, G. Zampieri, Nonlocal variational constants of motion in dissipative dynamics, Differ. Integral Equ., 30 (2017), 631-640.

[9]

G. Gorni and G. Zampieri, Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci. , published online 27 October 2017. doi: 10.1007/s40863-017-0079-3.

[10]

J. A. Kobussen, On a systematic search for integrals of motion, Helv. Phys. Acta, 53 (1980), 183-200.

[11]

P. G. L. Leach, Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246. doi: 10.2298/AADM120625015L.

[12]

R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European J. Phys. , 36 (2015), 065022, 20pp. doi: 10.1088/0143-0807/36/6/065022.

[13]

F. X. Mei, Lie symmetries and conserved quantities of constrained mechanical systems, Acta Mechanica, 141 (2000), 135-148. doi: 10.1007/BF01268673.

[14]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220. doi: 10.1016/0001-8708(75)90151-6.

[15]

W. Sarlet, F. Cantrijn, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494. doi: 10.1137/1023098.

[16]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4$^{th}$ Edition, Cambridge University Press, New York, 1959.

show all references

References:
[1]

F. T. Arecchi and R. Meucci, Chaos in lasers, Scholarpedia, 3 (2008), 7066. doi: 10.4249/scholarpedia.7066.

[2]

L. Y. Bahar, H. G. Kwatny, Extension of Noether's theorem to constrained non-conservative dynamical systems, Int. J. Non-Linear Mechanics, 22 (1987), 125-138. doi: 10.1016/0020-7462(87)90015-1.

[3]

F. Calogero, Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys, 12 (1971), 419-436. doi: 10.1063/1.1665604.

[4]

E. Candotti, C. Palmieri, B. Vitale, On the inversion of Noether's theorem in classical dynamical systems, Am. J. Phys., 40 (1972), 424-429. doi: 10.1119/1.1986566.

[5]

D. S. Djukic, A procedure for finding first integrals of mechanical systems with gauge-variant Lagrangians, Internat. J. Non-Linear Mech., 8 (1973), 479-488. doi: 10.1016/0020-7462(73)90039-5.

[6]

D. S. Djukic, B. D. Vujanovic, Noether's theory in classical nonconservative mechanics, Acta Mechanica, 23 (1975), 17-27. doi: 10.1007/BF01177666.

[7]

G. Gorni, G. Zampieri, Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73. doi: 10.1080/14029251.2014.894720.

[8]

G. Gorni, G. Zampieri, Nonlocal variational constants of motion in dissipative dynamics, Differ. Integral Equ., 30 (2017), 631-640.

[9]

G. Gorni and G. Zampieri, Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci. , published online 27 October 2017. doi: 10.1007/s40863-017-0079-3.

[10]

J. A. Kobussen, On a systematic search for integrals of motion, Helv. Phys. Acta, 53 (1980), 183-200.

[11]

P. G. L. Leach, Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246. doi: 10.2298/AADM120625015L.

[12]

R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European J. Phys. , 36 (2015), 065022, 20pp. doi: 10.1088/0143-0807/36/6/065022.

[13]

F. X. Mei, Lie symmetries and conserved quantities of constrained mechanical systems, Acta Mechanica, 141 (2000), 135-148. doi: 10.1007/BF01268673.

[14]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220. doi: 10.1016/0001-8708(75)90151-6.

[15]

W. Sarlet, F. Cantrijn, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494. doi: 10.1137/1023098.

[16]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4$^{th}$ Edition, Cambridge University Press, New York, 1959.

[1]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[2]

B. Bidégaray-Fesquet, F. Castella, Pierre Degond. From Bloch model to the rate equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 1-26. doi: 10.3934/dcds.2004.11.1

[3]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[4]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[5]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[6]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[7]

Monica Conti, V. Pata. Weakly dissipative semilinear equations of viscoelasticity. Communications on Pure & Applied Analysis, 2005, 4 (4) : 705-720. doi: 10.3934/cpaa.2005.4.705

[8]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[9]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'Alembert-Poincaré Equations by Several Stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[10]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[11]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[12]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[13]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[14]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[15]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[16]

Luigi C. Berselli, Franco Flandoli. Remarks on determining projections for stochastic dissipative equations . Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 197-214. doi: 10.3934/dcds.1999.5.197

[17]

Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200

[18]

Jean-Paul Chehab, Georges Sadaka. Numerical study of a family of dissipative KdV equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 519-546. doi: 10.3934/cpaa.2013.12.519

[19]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[20]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

2016 Impact Factor: 0.781

Article outline

[Back to Top]