• Previous Article
    Closed-form solutions for the Lucas-Uzawa growth model with logarithmic utility preferences via the partial Hamiltonian approach
  • DCDS-S Home
  • This Issue
  • Next Article
    Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry
2018, 11(4): 655-666. doi: 10.3934/dcdss.2018040

Conditional symmetries of nonlinear third-order ordinary differential equations

a. 

International Institute for Symmetry Analysis and Mathematical Modeling, North-West University, Mafikeng Campus, P Bag X2046, Mafikeng, South Africa

b. 

School of Computer Science and Applied Mathematics DST-NRF Centre of Excellence in Mathematical and Statistical Sciences, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa

* Corresponding author: Aeeman Fatima.

Received  December 2016 Revised  April 2017 Published  November 2017

In this work, we take as our base scalar second-order ordinary differential equations (ODEs) which have seven equivalence classes with each class possessing three Lie point symmetries. We show how one can calculate the conditional symmetries of third-order non-linear ODEs subject to root second-order nonlinear ODEs which admit three point symmetries. Moreover, we show when scalar second-order ODEs taken as first integrals or conditional first integrals are inherited as Lie point symmetries and as conditional symmetries of the derived third-order ODE. Furthermore, the derived scalar nonlinear third-order ODEs without substitution are considered for their conditional symmetries subject to root second-order ODEs having three symmetries.

Citation: Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040
References:
[1]

B. Abraham-ShraunerK. S. Govinder and P. G. L. Leach, Integration of second order ordinary differential equations not possessing Lie point symmetries, Phys. Lett. A, 203 (1995), 169-174. doi: 10.1016/0375-9601(95)00426-4.

[2]

D. J. Arrigo and J. M. Hill, Nonclassical symmetries for nonlinear diffusion and absorption, Stud. Appl. Math., 94 (1995), 21-39. doi: 10.1002/sapm199594121.

[3]

G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech., 18 (1969), 1025-1042.

[4]

S. S. Chern, Sur la géométrie d'une équation différentielle du troiséme ordre, CR Acad Sci Paris, 1937.

[5]

S. S. Chern, The geometry of the differential equation $ y''''=F(x, y, y'', y''')$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111.

[6]

R. Cherniha and M. Henkel, On non-linear partial differential equations with an infinite-dimensional conditional symmetry, J. Math. Anal. Appl., 298 (2004), 487-500. doi: 10.1016/j.jmaa.2004.05.038.

[7]

R. Cherniha and O. Pliukhin, New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities, J. Math. Anal. Appl., 403 (2013), 23-37. doi: 10.1016/j.jmaa.2013.02.010.

[8]

P. A. Clarkson, Nonclassical symmetry reductions of the Boussinesq equation, Chaos Solitons Fractals, 5 (1995), 2261-2301. doi: 10.1016/0960-0779(94)E0099-B.

[9]

P. A. Clarkson, Nonclassical symmetry reductions of nonlinear partial differential equations, Math. Comput. Model., 18 (1993), 45-68. doi: 10.1016/0895-7177(93)90214-J.

[10]

P. L. Da Silva and I. L. Freire, Symmetry analysis of a class of autonomous even-order ordinary differential equations, IMA J. Appl. Math., 80 (2015), 1739-1758, arXiv: 1311.0313v2 [mathph] 7 march 2014. doi: 10.1093/imamat/hxv014.

[11]

A. Fatima and F. M. Mahomed, Conditional symmetries for ordinary differential equations and applications, Int. J. Non-Linear Mech., 67 (2014), 95-105. doi: 10.1016/j.ijnonlinmec.2014.08.013.

[12]

W. I. Fushchich, Conditional symmetry of equations of nonlinear mathematical physics, Ukrain. Math. Zh., 43 (1991), 1456-1470. doi: 10.1007/BF01067273.

[13]

G. Gaeta, Conditional symmetries and conditional constants of motion for dynamical systems, Report of the Centre de Physique Theorique Ecole Polytechnique, Palaiseau France, 1 (1993), 1-24.

[14]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, Advanced Series in Nonlinear Dynamics, 19. World Scientific Publishing Co. , Inc. , River Edge, NJ, 2001. doi: 10.1142/9789812811943.

[15]

G. Grebot, The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group, J. Math. Anal. Appl., 206 (1997), 364-388. doi: 10.1006/jmaa.1997.5219.

[16]

N. H. Ibragimov and S. V. Meleshko, Linearization of third order ordinary differential equations by point and contact transformations, J. Math. Anal. Appl., 308 (2005), 266-289. doi: 10.1016/j.jmaa.2005.01.025.

[17]

N. H. Ibragimov, S. V. Meleshko and S. Suksern, Linearization of fourth order ordinary differential equation by point transformations, J. Phys. A, 41 (2008), 235206, 19 pp. doi: 10.1088/1751-8113/41/23/235206.

[18]

A. H. Kara and F. M. Mahomed, A Basis of conservation laws for partial differential equations, J. Nonlinear Math. Phys., 9 (2002), 60-72. doi: 10.2991/jnmp.2002.9.s2.6.

[19]

M. Kunzinger and R. O. Popovych, Generalized conditional symmetries of evolution equations, J. Math. Anal. Appl., 379 (2011), 444-460. doi: 10.1016/j.jmaa.2011.01.027.

[20]

P. G. L. Leach, Equivalence classes of second-order ordinary differential equations with three-dimensional Lie algebras of point symmetries and linearisation, J. Math. Anal. Appl., 284 (2003), 31-48. doi: 10.1016/S0022-247X(03)00147-1.

[21]

S. Lie, Lectures on Differential Equations with Known Infinitesimal Transformations, Leipzig, Teubner, 1981 (in German Lie's Lectures by G. Sheffers).

[22]

F. M. MahomedI. Naeem and A. Qadir, Conditional linearizability criteria for a system of third-order ordinary differential equations, Nonlinear Anal. B: Real World Appl., 10 (2009), 3404-3412. doi: 10.1016/j.nonrwa.2008.09.021.

[23]

F. M. Mahomed, Symmetry group classification of ordinary differential equations: Survey of some results, Math. Meth. Appl. Sci., 30 (2007), 1995-2012. doi: 10.1002/mma.934.

[24]

F. M. Mahomed and A. Qadir, Classification of ordinary differential equations by conditional linearizability and symmetry, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 573-584. doi: 10.1016/j.cnsns.2011.06.012.

[25]

F. M. Mahomed and A. Qadir, Conditional linearizability criteria for third order ordinary differential equations, J. Nonlinear Math. Phys., 15 (2008), 124-133. doi: 10.2991/jnmp.2008.15.s1.11.

[26]

F. M. Mahomed and A. Qadir, Conditional linearizability of fourth-order semilinear ordinary differential equations, J. Nonlinear Math. Phys., 16 (2009), 165-178. doi: 10.1142/S140292510900039X.

[27]

F. M. Mahomed and P. G. L. Leach, Symmetry Lie algebras of $n$ order ordinary differential equations, J. Math. Anal. Appl., 151 (1990), 80-107. doi: 10.1016/0022-247X(90)90244-A.

[28]

S. V. Meleshko, On linearization of third order ordinary differential equation, J. Phys. A, 39 (2006), 15135-15145. doi: 10.1088/0305-4470/39/49/005.

[29]

S. Neut and M. Petitot, La géométrie de l'équation $ y'''=f(x,y,y',y'')$, CR Acad. Sci. Paris Sér. I., 335 (2002), 515-518. doi: 10.1016/S1631-073X(02)02507-4.

[30]

P. J. Olver and E. M. Vorob'ev, Nonclassical and conditional symmetries, in: N. H. Ibragiminov (Ed. ), CRC Handbook of Lie Group Analysis, vol. 3, CRC Press, Boca Raton, 1994.

[31]

E. Pucci and G. Saccomandi, Evolution equations, invariant surface conditions and functional separation of variables, Physica D: Nonlinear Phenomena, 139 (2000), 28-47. doi: 10.1016/S0167-2789(99)00224-9.

[32]

E. Pucci and G. Saccomandi, On the weak symmetry groups of partial differential equations, J. Math. Anal. Appl., 163 (1992), 588-598. doi: 10.1016/0022-247X(92)90269-J.

[33]

E. Pucci, Similarity reductions of partial differential equations, J. Phys. A, 25 (1992), 2631-2640. doi: 10.1088/0305-4470/25/9/032.

[34]

W. SarletP. G. L. Leach and F. Cantrijn, First integrals versus configurational invariants and a weak form of complete integrability, Physica D, 17 (1985), 87-98. doi: 10.1016/0167-2789(85)90136-8.

[35]

S. Spichak and V. Stognii, Conditional symmetry and exact solutions of the Kramers equation, Nonlinear Math. Phys., 2 (1997), 450-454.

[36]

S. SuksernN. H. Ibragimov and S. V. Meleshko, Criteria for the fourth order ordinary differential equations to be linearizable by contact transformations, Common. Nonlinear Sci. Number. Simul., 14 (2009), 2619-2628. doi: 10.1016/j.cnsns.2008.09.021.

[37]

C. Wafo Soh and F. M. Mahomed, Linearization criteria for a system of second-order ordinary differential equations, Int. J. Non-Linear Mech., 36 (2001), 671-677. doi: 10.1016/S0020-7462(00)00032-9.

show all references

References:
[1]

B. Abraham-ShraunerK. S. Govinder and P. G. L. Leach, Integration of second order ordinary differential equations not possessing Lie point symmetries, Phys. Lett. A, 203 (1995), 169-174. doi: 10.1016/0375-9601(95)00426-4.

[2]

D. J. Arrigo and J. M. Hill, Nonclassical symmetries for nonlinear diffusion and absorption, Stud. Appl. Math., 94 (1995), 21-39. doi: 10.1002/sapm199594121.

[3]

G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech., 18 (1969), 1025-1042.

[4]

S. S. Chern, Sur la géométrie d'une équation différentielle du troiséme ordre, CR Acad Sci Paris, 1937.

[5]

S. S. Chern, The geometry of the differential equation $ y''''=F(x, y, y'', y''')$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111.

[6]

R. Cherniha and M. Henkel, On non-linear partial differential equations with an infinite-dimensional conditional symmetry, J. Math. Anal. Appl., 298 (2004), 487-500. doi: 10.1016/j.jmaa.2004.05.038.

[7]

R. Cherniha and O. Pliukhin, New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities, J. Math. Anal. Appl., 403 (2013), 23-37. doi: 10.1016/j.jmaa.2013.02.010.

[8]

P. A. Clarkson, Nonclassical symmetry reductions of the Boussinesq equation, Chaos Solitons Fractals, 5 (1995), 2261-2301. doi: 10.1016/0960-0779(94)E0099-B.

[9]

P. A. Clarkson, Nonclassical symmetry reductions of nonlinear partial differential equations, Math. Comput. Model., 18 (1993), 45-68. doi: 10.1016/0895-7177(93)90214-J.

[10]

P. L. Da Silva and I. L. Freire, Symmetry analysis of a class of autonomous even-order ordinary differential equations, IMA J. Appl. Math., 80 (2015), 1739-1758, arXiv: 1311.0313v2 [mathph] 7 march 2014. doi: 10.1093/imamat/hxv014.

[11]

A. Fatima and F. M. Mahomed, Conditional symmetries for ordinary differential equations and applications, Int. J. Non-Linear Mech., 67 (2014), 95-105. doi: 10.1016/j.ijnonlinmec.2014.08.013.

[12]

W. I. Fushchich, Conditional symmetry of equations of nonlinear mathematical physics, Ukrain. Math. Zh., 43 (1991), 1456-1470. doi: 10.1007/BF01067273.

[13]

G. Gaeta, Conditional symmetries and conditional constants of motion for dynamical systems, Report of the Centre de Physique Theorique Ecole Polytechnique, Palaiseau France, 1 (1993), 1-24.

[14]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, Advanced Series in Nonlinear Dynamics, 19. World Scientific Publishing Co. , Inc. , River Edge, NJ, 2001. doi: 10.1142/9789812811943.

[15]

G. Grebot, The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group, J. Math. Anal. Appl., 206 (1997), 364-388. doi: 10.1006/jmaa.1997.5219.

[16]

N. H. Ibragimov and S. V. Meleshko, Linearization of third order ordinary differential equations by point and contact transformations, J. Math. Anal. Appl., 308 (2005), 266-289. doi: 10.1016/j.jmaa.2005.01.025.

[17]

N. H. Ibragimov, S. V. Meleshko and S. Suksern, Linearization of fourth order ordinary differential equation by point transformations, J. Phys. A, 41 (2008), 235206, 19 pp. doi: 10.1088/1751-8113/41/23/235206.

[18]

A. H. Kara and F. M. Mahomed, A Basis of conservation laws for partial differential equations, J. Nonlinear Math. Phys., 9 (2002), 60-72. doi: 10.2991/jnmp.2002.9.s2.6.

[19]

M. Kunzinger and R. O. Popovych, Generalized conditional symmetries of evolution equations, J. Math. Anal. Appl., 379 (2011), 444-460. doi: 10.1016/j.jmaa.2011.01.027.

[20]

P. G. L. Leach, Equivalence classes of second-order ordinary differential equations with three-dimensional Lie algebras of point symmetries and linearisation, J. Math. Anal. Appl., 284 (2003), 31-48. doi: 10.1016/S0022-247X(03)00147-1.

[21]

S. Lie, Lectures on Differential Equations with Known Infinitesimal Transformations, Leipzig, Teubner, 1981 (in German Lie's Lectures by G. Sheffers).

[22]

F. M. MahomedI. Naeem and A. Qadir, Conditional linearizability criteria for a system of third-order ordinary differential equations, Nonlinear Anal. B: Real World Appl., 10 (2009), 3404-3412. doi: 10.1016/j.nonrwa.2008.09.021.

[23]

F. M. Mahomed, Symmetry group classification of ordinary differential equations: Survey of some results, Math. Meth. Appl. Sci., 30 (2007), 1995-2012. doi: 10.1002/mma.934.

[24]

F. M. Mahomed and A. Qadir, Classification of ordinary differential equations by conditional linearizability and symmetry, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 573-584. doi: 10.1016/j.cnsns.2011.06.012.

[25]

F. M. Mahomed and A. Qadir, Conditional linearizability criteria for third order ordinary differential equations, J. Nonlinear Math. Phys., 15 (2008), 124-133. doi: 10.2991/jnmp.2008.15.s1.11.

[26]

F. M. Mahomed and A. Qadir, Conditional linearizability of fourth-order semilinear ordinary differential equations, J. Nonlinear Math. Phys., 16 (2009), 165-178. doi: 10.1142/S140292510900039X.

[27]

F. M. Mahomed and P. G. L. Leach, Symmetry Lie algebras of $n$ order ordinary differential equations, J. Math. Anal. Appl., 151 (1990), 80-107. doi: 10.1016/0022-247X(90)90244-A.

[28]

S. V. Meleshko, On linearization of third order ordinary differential equation, J. Phys. A, 39 (2006), 15135-15145. doi: 10.1088/0305-4470/39/49/005.

[29]

S. Neut and M. Petitot, La géométrie de l'équation $ y'''=f(x,y,y',y'')$, CR Acad. Sci. Paris Sér. I., 335 (2002), 515-518. doi: 10.1016/S1631-073X(02)02507-4.

[30]

P. J. Olver and E. M. Vorob'ev, Nonclassical and conditional symmetries, in: N. H. Ibragiminov (Ed. ), CRC Handbook of Lie Group Analysis, vol. 3, CRC Press, Boca Raton, 1994.

[31]

E. Pucci and G. Saccomandi, Evolution equations, invariant surface conditions and functional separation of variables, Physica D: Nonlinear Phenomena, 139 (2000), 28-47. doi: 10.1016/S0167-2789(99)00224-9.

[32]

E. Pucci and G. Saccomandi, On the weak symmetry groups of partial differential equations, J. Math. Anal. Appl., 163 (1992), 588-598. doi: 10.1016/0022-247X(92)90269-J.

[33]

E. Pucci, Similarity reductions of partial differential equations, J. Phys. A, 25 (1992), 2631-2640. doi: 10.1088/0305-4470/25/9/032.

[34]

W. SarletP. G. L. Leach and F. Cantrijn, First integrals versus configurational invariants and a weak form of complete integrability, Physica D, 17 (1985), 87-98. doi: 10.1016/0167-2789(85)90136-8.

[35]

S. Spichak and V. Stognii, Conditional symmetry and exact solutions of the Kramers equation, Nonlinear Math. Phys., 2 (1997), 450-454.

[36]

S. SuksernN. H. Ibragimov and S. V. Meleshko, Criteria for the fourth order ordinary differential equations to be linearizable by contact transformations, Common. Nonlinear Sci. Number. Simul., 14 (2009), 2619-2628. doi: 10.1016/j.cnsns.2008.09.021.

[37]

C. Wafo Soh and F. M. Mahomed, Linearization criteria for a system of second-order ordinary differential equations, Int. J. Non-Linear Mech., 36 (2001), 671-677. doi: 10.1016/S0020-7462(00)00032-9.

Table Ⅰ.  Lie group classification of scalar second-order equations in the real plane
$p=\partial /\partial x$ and $q=\partial /\partial y$
Algebra Canonical forms of generators Representative equations
$L_{1}$ $X_1=p$ $y''=g(y,y')$
$L_{2;1}^I$ $X_1=p,X_2=q$ $y''=g(y')$
$L_{2;1}^{II}$ $X_1=q,X_2=xp+yq$ $xy''=g(y')$
$L_{3;3}^I$ $X_1=p, X_2=q, X_3=xp+(x+y)q$ $y''=Ae^{-y'}$
$L_{3;6}^I$ $X_1=p, X_2=q, X_3=xp+ayq$ $y''=Ay'^{(a-2)/(a-1)}$
$L_{3;7}^I$ $X_1=p, X_2=q, X_3=(bx+y)p+(by-x)q$ $y''=A(1+y'^{2})^{\frac{3}{2}}e^{b\arctan y'}$
$L_{3;8}^I$ $X_1=q, X_2=xp+yq, X_3=2xyp+y^2q$ $xy''=Ay'^{3}-\frac{1}{2}y'$
$L_{3;8}^{II}$ $X_1=q, X_2=xp+yq, X_3=2xyp+(y^2+x^2)q$ $xy''=y'+y'^{3}+A(1+y'^{2})^{\frac{3}{2}}$
$L_{3;8}^{III}$ $X_1=q, X_2=xp+yq, X_3=2xyp+(y^2-x^2)q$ $xy''=y'-y'^{3}+A(1-y'^{2})^{\frac{3}{2}}$
$L_{3;9}$ $X_1=(1+x^2)p+xyq, X_2=xyp+(1+y^2)q$,
$X_3=yp-xq$ $y''=A[\displaystyle{1+y'+(y-xy')^2\over 1+x^2+y^2}]^{3/2}$
$p=\partial /\partial x$ and $q=\partial /\partial y$
Algebra Canonical forms of generators Representative equations
$L_{1}$ $X_1=p$ $y''=g(y,y')$
$L_{2;1}^I$ $X_1=p,X_2=q$ $y''=g(y')$
$L_{2;1}^{II}$ $X_1=q,X_2=xp+yq$ $xy''=g(y')$
$L_{3;3}^I$ $X_1=p, X_2=q, X_3=xp+(x+y)q$ $y''=Ae^{-y'}$
$L_{3;6}^I$ $X_1=p, X_2=q, X_3=xp+ayq$ $y''=Ay'^{(a-2)/(a-1)}$
$L_{3;7}^I$ $X_1=p, X_2=q, X_3=(bx+y)p+(by-x)q$ $y''=A(1+y'^{2})^{\frac{3}{2}}e^{b\arctan y'}$
$L_{3;8}^I$ $X_1=q, X_2=xp+yq, X_3=2xyp+y^2q$ $xy''=Ay'^{3}-\frac{1}{2}y'$
$L_{3;8}^{II}$ $X_1=q, X_2=xp+yq, X_3=2xyp+(y^2+x^2)q$ $xy''=y'+y'^{3}+A(1+y'^{2})^{\frac{3}{2}}$
$L_{3;8}^{III}$ $X_1=q, X_2=xp+yq, X_3=2xyp+(y^2-x^2)q$ $xy''=y'-y'^{3}+A(1-y'^{2})^{\frac{3}{2}}$
$L_{3;9}$ $X_1=(1+x^2)p+xyq, X_2=xyp+(1+y^2)q$,
$X_3=yp-xq$ $y''=A[\displaystyle{1+y'+(y-xy')^2\over 1+x^2+y^2}]^{3/2}$
Table Ⅱ.  Inherited symmetries of derived scalar third-order equations
Representative 2nd-order ODE $A\ne0$ Derived 3rd-order ODE Inherited algebra
$y''=Ae^{-y'}$ $y'''+y''^{2}=0$ $L_{3;3}^{I}$
$y''=Ay'^{(a-2)/(a-1)}$ $y'y'''-\frac{a-2}{a-1}y''^2=0$ $L_{3;6}^I$
$y''=A(1+y'^{2})^{\frac{3}{2}}e^{b\arctan y'}$ $y'''-\frac{3y'+b}{1+y'^2}y''^2=0$ $L_{3;7}^I$
$xy''=Ay'^{3}-\frac{1}{2}y'$ $y'y'''-3y''^2=0$ $L_{3;8}^I$
$xy''=y'+y'^{3}+A(1+y'^{2})^{\frac{3}{2}}$ $y'''+y'''y'^2-3y'y''^2=0$ $L_{3;8}^{II}$
$xy''=y'-y'^{3}+A(1-y'^{2})^{\frac{3}{2}}$ $y'''-y'''y'^2-3y'y''^2=0$ $L_{3;8}^{III}$
$y''=AK^{3/2}$ $y'''=\frac32y''K^{-1}D_x K$ $L_{3;9}$
where $K=\displaystyle{1+y'+(y-xy')^2\over 1+x^2+y^2}$
Representative 2nd-order ODE $A\ne0$ Derived 3rd-order ODE Inherited algebra
$y''=Ae^{-y'}$ $y'''+y''^{2}=0$ $L_{3;3}^{I}$
$y''=Ay'^{(a-2)/(a-1)}$ $y'y'''-\frac{a-2}{a-1}y''^2=0$ $L_{3;6}^I$
$y''=A(1+y'^{2})^{\frac{3}{2}}e^{b\arctan y'}$ $y'''-\frac{3y'+b}{1+y'^2}y''^2=0$ $L_{3;7}^I$
$xy''=Ay'^{3}-\frac{1}{2}y'$ $y'y'''-3y''^2=0$ $L_{3;8}^I$
$xy''=y'+y'^{3}+A(1+y'^{2})^{\frac{3}{2}}$ $y'''+y'''y'^2-3y'y''^2=0$ $L_{3;8}^{II}$
$xy''=y'-y'^{3}+A(1-y'^{2})^{\frac{3}{2}}$ $y'''-y'''y'^2-3y'y''^2=0$ $L_{3;8}^{III}$
$y''=AK^{3/2}$ $y'''=\frac32y''K^{-1}D_x K$ $L_{3;9}$
where $K=\displaystyle{1+y'+(y-xy')^2\over 1+x^2+y^2}$
[1]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[2]

Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221

[3]

Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 451-471. doi: 10.3934/dcdss.2010.3.451

[4]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[5]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[6]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[7]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[8]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[9]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[10]

José F. Cariñena, Fernando Falceto, Manuel F. Rañada. Canonoid transformations and master symmetries. Journal of Geometric Mechanics, 2013, 5 (2) : 151-166. doi: 10.3934/jgm.2013.5.151

[11]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[12]

Júlio Cesar Santos Sampaio, Igor Leite Freire. Symmetries and solutions of a third order equation. Conference Publications, 2015, 2015 (special) : 981-989. doi: 10.3934/proc.2015.0981

[13]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[14]

L. Bakker, G. Conner. A class of generalized symmetries of smooth flows . Communications on Pure & Applied Analysis, 2004, 3 (2) : 183-195. doi: 10.3934/cpaa.2004.3.183

[15]

Michael Baake, John A. G. Roberts, Reem Yassawi. Reversing and extended symmetries of shift spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 835-866. doi: 10.3934/dcds.2018036

[16]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[17]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[18]

Katherine A. Kime. Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018063

[19]

Giovanni Rastelli, Manuele Santoprete. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7 (4) : 483-515. doi: 10.3934/jgm.2015.7.483

[20]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (17)
  • HTML views (97)
  • Cited by (0)

[Back to Top]