# American Institute of Mathematical Sciences

August 2018, 11(4): 583-594. doi: 10.3934/dcdss.2018033

## Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection

 a. DBS & H CEME, National University of Sciences and Technology, Islamabad, Pakistan b. Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan-303007, India c. Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan

* Corresponding author: Noreen Sher Akbar

Received  October 2016 Revised  May 2017 Published  November 2017

The present study analyzes the heat energy transfer in nano fluids flow through the porous stretching surface. Cattanneo-Christov heat flux model is employed to study the heat energy transfer. Darcy law is used to discuss the flow characteristics over the different types of permeable sheets with suction and injection. Nanofluids is considered as water based single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) nanofluids. A comparative study for SWCNT and MWCNT is also made. Governing equations are transformed into set of ordinary differential equations using similarity transformations. The computational results are obtained by using Runge-Kutta fourth order method along with shooting technique. Numerical and graphical results are presented to discuss the effects of various physical parameters on velocity profile, temperature profile, Nusselt number, Sherwood number and skin friction coefficient for different type of nanoparticles for suction and injection cases. Stream lines and isotherms are also plotted for three different cases viz. permeable sheet with suction, impermeable sheet and permeable sheet with injection. A comparative analysis with existing results is tabulated which validate that the numerical results of present study have good correlation with existing results. The outcomes of the results show that skin friction coefficient is more for SWCNT in caparison of MWCNT and the boundary layer thickness is maximum for permeable stretching sheet with suction parameter.

Citation: Noreen Sher Akbar, Dharmendra Tripathi, Zafar Hayat Khan. Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 583-594. doi: 10.3934/dcdss.2018033
##### References:

show all references

##### References:
Schematic representation of SWCNT and MWCNT nanofluids flow over porous stretching Surface
Velocity profile for different values of solid nanoparticles volume fraction with porosity parameter. (a) Suction parameter. (b) Impermeable sheet. (c) Injection parameter
Temperature profile for different values of solid nanoparticles volume fraction with porosity parameter. (a) Suction parameter. (b) Impermeable sheet. (c) Injection parameter
Temperature profile for different values of solid nanoparticles volume fraction with thermal relaxation time. (a) Suction parameter. (b) Impermeable sheet. (c) Injection parameter
Skin friction coefficient for SWCNT and MWCNT with porosity parameter. (a) Suction parameter (b) Impermeable sheet. (c) Injection parameter
Nusselt number for SWCNT and MWCNT with porosity parameter (a) Suction parameter. (b) Impermeable sheet. (c) Injection parameter
Nusselt number for SWCNT and MWCNT with thermal relaxation time (a) Suction parameter. (b) Impermeable sheet. (c) Injection parameter
Streamlines for (a) Suction parameter (b) Impermeable sheet (c) Injection parameter at $\phi =0.2, \gamma=1,N=0.5$
Isotherms for (a) Suction parameter (b) Impermeable sheet (c) Injection parameter at $\phi =0.2, \gamma=1,N=0.5$
Thermophysical properties of different base fluid and CNT's
 Physical properties Base fluid Nanoparticles Water SWCNT MWCNT $\rho$ (kg/m$^3$) 997 2,600 1,600 $c_p$(J/kg K) 4,179 425 796 $k$(W/m K) 0.613 6,600 3,000 r (nm) 0.1 10 10
 Physical properties Base fluid Nanoparticles Water SWCNT MWCNT $\rho$ (kg/m$^3$) 997 2,600 1,600 $c_p$(J/kg K) 4,179 425 796 $k$(W/m K) 0.613 6,600 3,000 r (nm) 0.1 10 10
Comparison of results for the skin friction for pure fluid $(\phi = 0)$
 N Present results Salahuddin et al. [32] Noreen et al. [5] 0.0 1 1 1 0.5 -1.11703 -1.11701 -1.11703 1 -1.41321 -1.41318 -1.41321 5 -2.44849 -2.44842 -2.44849 10 -3.31653 -3.31656 -3.31653 100 -10.04978 -10.04971 -10.04978 500 -22.38313 -22.38383 -22.38313 1000 -31.63849 -31.63856 -31.63869
 N Present results Salahuddin et al. [32] Noreen et al. [5] 0.0 1 1 1 0.5 -1.11703 -1.11701 -1.11703 1 -1.41321 -1.41318 -1.41321 5 -2.44849 -2.44842 -2.44849 10 -3.31653 -3.31656 -3.31653 100 -10.04978 -10.04971 -10.04978 500 -22.38313 -22.38383 -22.38313 1000 -31.63849 -31.63856 -31.63869
Comparison of results for the Nusselt number for pure fluid $(\phi = 0)$ with $N=0$ and $\gamma=0$
 Pr Present results Khan et al. [21] Khan Pop. [23] Wang [40] Kandasamy et al. [22] 0.07 0.0664 0.0664 0.0664 0.0655 0.0662 0.20 0.1692 0.1692 0.1692 0.1692 0.1692 0.70 0.4538 0.4538 0.4538 0.4538 0.4543 2 0.9113 0.9113 0.9114 0.9115 0.9115 7 1.8953 1.8953 1.8953 1.8953 1.8952 20 3.3538 3.3538 3.3538 3.3538 - 70 6.4621 6.4623 6.4622 6.4623 -
 Pr Present results Khan et al. [21] Khan Pop. [23] Wang [40] Kandasamy et al. [22] 0.07 0.0664 0.0664 0.0664 0.0655 0.0662 0.20 0.1692 0.1692 0.1692 0.1692 0.1692 0.70 0.4538 0.4538 0.4538 0.4538 0.4543 2 0.9113 0.9113 0.9114 0.9115 0.9115 7 1.8953 1.8953 1.8953 1.8953 1.8952 20 3.3538 3.3538 3.3538 3.3538 - 70 6.4621 6.4623 6.4622 6.4623 -
 [1] Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034 [2] Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 [3] Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169 [4] Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 [5] Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043 [6] Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113 [7] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57 [8] Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317 [9] Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525 [10] G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705 [11] Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 [12] Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum. Networks & Heterogeneous Media, 2010, 5 (4) : 765-782. doi: 10.3934/nhm.2010.5.765 [13] Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521 [14] X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure & Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 [15] Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861 [16] Alina Chertock, Alexander Kurganov, Xuefeng Wang, Yaping Wu. On a chemotaxis model with saturated chemotactic flux. Kinetic & Related Models, 2012, 5 (1) : 51-95. doi: 10.3934/krm.2012.5.51 [17] Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045 [18] Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265 [19] Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036 [20] Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

2016 Impact Factor: 0.781

## Tools

Article outline

Figures and Tables