American Institute of Mathematical Sciences

December  2017, 10(6): 1233-1256. doi: 10.3934/dcdss.2017067

Stress-diffusive regularizations of non-dissipative rate-type materials

 1 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland 2 OxPDE, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom 3 Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83,186 75 Prague 8, Czech Republic 4 University of Warsaw, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw, Poland 5 Heidelberg University, Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205,69120 Heidelberg, Germany

* Corresponding author: Piotr Minakowski: minak@mimuw.edu.pl

To Tomáš Roubíček on the occasion of his 60th birthday.

Received  July 2016 Revised  February 2017 Published  June 2017

We consider non-dissipative (elastic) rate-type material models that are derived within the Gibbs-potential-based thermodynamic framework. Since the absence of any dissipative mechanism in the model prevents us from establishing even a local-in-time existence result in two spatial dimensions for a spatially periodic problem, we propose two regularisations. For such regularized problems we obtain well-posedness of the planar, spatially periodic problem. In contrast with existing results, we prove ours for a regularizing term present solely in the evolution equation for the stress.

Citation: Jan Burczak, Josef Málek, Piotr Minakowski. Stress-diffusive regularizations of non-dissipative rate-type materials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1233-1256. doi: 10.3934/dcdss.2017067
References:

show all references

References:
 [1] Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 [2] Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations & Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035 [3] K. R. Rajagopal. The thermo-mechanics of rate-type fluids. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1133-1145. doi: 10.3934/dcdss.2012.5.1133 [4] Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203 [5] Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181 [6] Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371 [7] Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815 [8] Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 [9] Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605 [10] Amina Amassad, Mircea Sofonea. Analysis of some nonlinear evolution systems arising in rate-type viscoplasticity. Conference Publications, 1998, 1998 (Special) : 58-71. doi: 10.3934/proc.1998.1998.58 [11] Markus Grasmair. Well-posedness and convergence rates for sparse regularization with sublinear $l^q$ penalty term. Inverse Problems & Imaging, 2009, 3 (3) : 383-387. doi: 10.3934/ipi.2009.3.383 [12] Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553 [13] Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 [14] Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 [15] Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095 [16] Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197 [17] Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435 [18] Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555 [19] Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i [20] Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

2018 Impact Factor: 0.545