June  2017, 10(3): 581-603. doi: 10.3934/dcdss.2017029

Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA

* Corresponding author: Guo-Bao Zhang

Received  January 2016 Revised  December 2016 Published  February 2017

This paper is concerned with traveling waves for temporally delayed, spatially discrete reaction-diffusion equations without quasi-monotonicity. We first establish the existence of non-critical traveling waves (waves with speeds c>c*, where c* is minimal speed). Then by using the weighted energy method with a suitably selected weight function, we prove that all noncritical traveling waves Φ(x+ct) (monotone or nonmonotone) are time-asymptotically stable, when the initial perturbations around the wavefronts in a certain weighted Sobolev space are small.

Citation: Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029
References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569. doi: 10.1006/jdeq.2001.4153. Google Scholar

[2]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258. doi: 10.1137/050627824. Google Scholar

[3]

I.-Liang. ChernM. MeiX.-F. Yang and Q.-F. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541. doi: 10.1016/j.jde.2015.03.003. Google Scholar

[4]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. Lond. Ser. A., 466 (2010), 1919-1934. doi: 10.1098/rspa.2009.0577. Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212. doi: 10.3934/dcds.2005.12.193. Google Scholar

[6]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation, J. Math. Anal. Appl., 347 (2008), 450-458. doi: 10.1016/j.jmaa.2008.03.076. Google Scholar

[7]

S. J. Guo and J. Zimmer, Travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, arXiv: 1406.5321v1. doi: 10.1088/0951-7715/28/2/463. Google Scholar

[8]

S. J. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492. doi: 10.1088/0951-7715/28/2/463. Google Scholar

[9]

S. A. Gourley, Linear stability of traveling fronts in an age-structured reaction-diffusion population model, Quart. J. Mech. Appl. Math., 58 (2005), 257-268. doi: 10.1093/qjmamj/hbi012. Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[11]

R. HuangM. MeiK.-J. Zhang and Q.-F. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353. doi: 10.3934/dcds.2016.36.1331. Google Scholar

[12]

C.-B. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989. doi: 10.1016/j.jde.2015.03.025. Google Scholar

[13]

G. Lv and M.-X. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873. doi: 10.1088/0951-7715/23/4/005. Google Scholar

[14]

C.-K. LinC.-T. LinY. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391. Google Scholar

[15]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594. doi: 10.1017/S0308210500003358. Google Scholar

[16]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568. doi: 10.1017/S0308210506000333. Google Scholar

[17]

S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277. doi: 10.1016/j.jde.2007.03.014. Google Scholar

[18]

S. W. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. doi: 10.1016/j.jde.2005.05.004. Google Scholar

[19]

A. Solar and S. Trofimchuk, Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction, Nonlinearity, 28 (2015), 2027-2052. doi: 10.1088/0951-7715/28/7/2027. Google Scholar

[20]

E. TrofimchukM. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction, Discrete Contin. Dyn. Syst., 33 (2013), 2169-2187. doi: 10.3934/dcds.2013.33.2169. Google Scholar

[21]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Differential Equations, 246 (2009), 1422-1444. doi: 10.1016/j.jde.2008.10.023. Google Scholar

[22]

S.-L. WuW.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458. doi: 10.1016/j.jmaa.2009.06.061. Google Scholar

[23]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397. doi: 10.1007/s00033-010-0112-1. Google Scholar

[24]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651–687, J. Dynam. Differential Equations, 20 (2008), 531–533 (Erratum). doi: 10.1023/A:1016690424892. Google Scholar

[25]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844. doi: 10.1007/s00033-013-0353-x. Google Scholar

show all references

References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569. doi: 10.1006/jdeq.2001.4153. Google Scholar

[2]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258. doi: 10.1137/050627824. Google Scholar

[3]

I.-Liang. ChernM. MeiX.-F. Yang and Q.-F. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541. doi: 10.1016/j.jde.2015.03.003. Google Scholar

[4]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. Lond. Ser. A., 466 (2010), 1919-1934. doi: 10.1098/rspa.2009.0577. Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212. doi: 10.3934/dcds.2005.12.193. Google Scholar

[6]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation, J. Math. Anal. Appl., 347 (2008), 450-458. doi: 10.1016/j.jmaa.2008.03.076. Google Scholar

[7]

S. J. Guo and J. Zimmer, Travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, arXiv: 1406.5321v1. doi: 10.1088/0951-7715/28/2/463. Google Scholar

[8]

S. J. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492. doi: 10.1088/0951-7715/28/2/463. Google Scholar

[9]

S. A. Gourley, Linear stability of traveling fronts in an age-structured reaction-diffusion population model, Quart. J. Mech. Appl. Math., 58 (2005), 257-268. doi: 10.1093/qjmamj/hbi012. Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[11]

R. HuangM. MeiK.-J. Zhang and Q.-F. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353. doi: 10.3934/dcds.2016.36.1331. Google Scholar

[12]

C.-B. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989. doi: 10.1016/j.jde.2015.03.025. Google Scholar

[13]

G. Lv and M.-X. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873. doi: 10.1088/0951-7715/23/4/005. Google Scholar

[14]

C.-K. LinC.-T. LinY. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391. Google Scholar

[15]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594. doi: 10.1017/S0308210500003358. Google Scholar

[16]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568. doi: 10.1017/S0308210506000333. Google Scholar

[17]

S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277. doi: 10.1016/j.jde.2007.03.014. Google Scholar

[18]

S. W. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. doi: 10.1016/j.jde.2005.05.004. Google Scholar

[19]

A. Solar and S. Trofimchuk, Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction, Nonlinearity, 28 (2015), 2027-2052. doi: 10.1088/0951-7715/28/7/2027. Google Scholar

[20]

E. TrofimchukM. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction, Discrete Contin. Dyn. Syst., 33 (2013), 2169-2187. doi: 10.3934/dcds.2013.33.2169. Google Scholar

[21]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Differential Equations, 246 (2009), 1422-1444. doi: 10.1016/j.jde.2008.10.023. Google Scholar

[22]

S.-L. WuW.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458. doi: 10.1016/j.jmaa.2009.06.061. Google Scholar

[23]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397. doi: 10.1007/s00033-010-0112-1. Google Scholar

[24]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651–687, J. Dynam. Differential Equations, 20 (2008), 531–533 (Erratum). doi: 10.1023/A:1016690424892. Google Scholar

[25]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844. doi: 10.1007/s00033-013-0353-x. Google Scholar

[1]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[2]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[3]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[4]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[5]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[6]

Ana Carpio, Gema Duro. Explosive behavior in spatially discrete reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 693-711. doi: 10.3934/dcdsb.2009.12.693

[7]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[8]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[9]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[10]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[11]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[12]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[13]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[14]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[15]

Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171

[16]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[17]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[18]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[19]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[20]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (4)
  • Cited by (3)

[Back to Top]