June  2017, 10(3): 413-444. doi: 10.3934/dcdss.2017020

State transformations of time-varying delay systems and their applications to state observer design

1. 

Department of Mathematics, Quynhon University, Quynhon, Binhdinh, Vietnam

2. 

Department of Mathematics and Informatics, Thainguyen University of Science, Thainguyen, Vietnam

* Corresponding author

Received  June 2016 Revised  January 2017 Published  February 2017

In this paper, we derive new state transformations of linear systems with a time-varying delay in the state vector. We first provide a new algebraic and systematic method for computing forward state transformations to transform time-delay systems into a novel form where time-varying delay appears in the input and output vectors, but not in the state vector. In the new coordinate system, a Luenberger-type state observer with a guaranteed $ β $-exponential stability margin can be designed. Then, a backward state transformation problem which allows us to reconstruct the original state vector of the system is investigated. By using both the forward and the backward state transformations, state observers for time-varying delay systems can be systematically designed. Conditions for ensuring the existence of the forward and backward state transformations and an effective algorithm for computing them are given in this paper. We illustrate our results by three examples and simulation results.

Citation: Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020
References:
[1]

M. Boutayeb, Observer design for linear time-delay systems, Syst. & Contr. Letters, 44 (2001), 103-109. doi: 10.1016/S0167-6911(01)00129-3. Google Scholar

[2]

D. BoutatA. BenaliH. Hammouri and K. Busawon, New algorithm for observer error linearization with a diffeomorphism on the outputs, Automatica, 45 (2009), 2187-2193. doi: 10.1016/j.automatica.2009.05.030. Google Scholar

[3]

D. BoutatL. Boutat-Baddas and M. Darouach, A new reduced-order observer normal form for nonlinear discrete time systems, Systems & Control Letters, 61 (2012), 1003-1008. doi: 10.1016/j.sysconle.2012.07.007. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611970777. Google Scholar

[5]

F. CacaceA. Germani and C. Manes, An observer for a class of nonlinear systems with time varying observation delay, Systems & Control Letters, 59 (2010), 305-312. doi: 10.1016/j.sysconle.2010.03.005. Google Scholar

[6]

M. Darouach, Linear functional observers for systems with delays in state variables, IEEE Trans. Automat. Control, 46 (2001), 491-496. doi: 10.1109/9.911430. Google Scholar

[7]

F. W. Fairman and A. Kumar, Delayless observers for systems with delay, IEEE Trans. Automat. Control, 31 (1986), 258-259. doi: 10.1109/TAC.1986.1104228. Google Scholar

[8]

H. Gao and X. Li, $ H_{∞} $ filtering for discrete-time state-delayed systems with finite frequency specifications, IEEE Trans. Automat. Control, 56 (2001), 2935-2941. doi: 10.1109/TAC.2011.2159909. Google Scholar

[9] K. GuV. L. Kharitonov and J. Chen, Stability of Time-delay Systems, Springer, Birkhäuser Boston, 2003. doi: 10.1007/978-1-4612-0039-0. Google Scholar
[10] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar
[11]

M. Hou and A. C. Pugh, Observer with linear error dynamics for nonlinear multi-output systems, Systems & Control Letters, 37 (1999), 1-9. doi: 10.1016/S0167-6911(98)00105-4. Google Scholar

[12]

M. HouP. Zitek and R. J. Patton, An observer design for linear time-delay systems, IEEE Transactions on Automatic Control, 47 (2002), 121-125. doi: 10.1109/9.981730. Google Scholar

[13]

D. C. HuongH. TrinhH. M. Tran and T. Fernando, Approach to fault detection of time-delay systems using functional observers, Electronic Letters, 50 (2014), 1132-1134. doi: 10.1049/el.2014.1480. Google Scholar

[14]

D. C. Huong and H. Trinh, Method for computing state transformations of time-delay systems, IET Control Theory & Applications, 9 (2015), 2405-2413. doi: 10.1049/iet-cta.2015.0108. Google Scholar

[15]

A. J. Krener, Linearization by output injection and nonlinear observers, Syst. & Contr. Letters, 3 (1983), 47-52. doi: 10.1016/0167-6911(83)90037-3. Google Scholar

[16]

A. J. Krener and W. Respondek, Nonlinear observers with Linearization error dynamics, Siam J. Control Optimization, 23 (1985), 197-216. doi: 10.1137/0323016. Google Scholar

[17]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993. Google Scholar

[18]

M. Malek-Zavarei and M. Jamshidi, Time-delay Systems: Analysis Optimization and Applications North-Holland Systems and Control Series, 9. North-Holland Publishing Co. , Amsterdam, 1987. Google Scholar

[19]

S. Mondie and V. L. Kharitonov, Exponential estimates for retarded time-delay systems: An LMI approach, IEEE Trans. Automat. Control, 50 (2005), 268-273. doi: 10.1109/TAC.2004.841916. Google Scholar

[20]

P. T. NamP. N. Pathirana and H. Trinh, ϵ-bounded state estimation for time-delay systems with bounded disturbances, Int. J. Control, 87 (2014), 1747-1756. doi: 10.1080/00207179.2014.884727. Google Scholar

[21]

P. T. NamP. N. Pathirana and H. Trinh, Linear functional state bounding for perturbed time-delay systems and its application, IMA J. Math. Control Inf., 32 (2015), 245-255. doi: 10.1093/imamci/dnt039. Google Scholar

[22]

P. Niamsup and V. N. Phat, A Novel Exponential Stability Condition for a Class of Hybrid Neural Networks with Time-varying Delay, Vietnam Journal of Mathematics, 38 (2010), 341-351. Google Scholar

[23]

P. Niamsup and V. N. Phat, State Feedback Guaranteed Cost Controller for Nonlinear Time-Varying Delay Systems, Vietnam Journal of Mathematics, 43 (2015), 215-228. doi: 10.1007/s10013-014-0108-9. Google Scholar

[24]

R. M. PalharesC. E. de Souza and P. L. D. Peres, Robust $ {{H}_{\infty }} $ filtering for uncertain discretetime state-delayed systems, IEEE Trans. Signal Processing, 49 (2001), 1696-1703. doi: 10.1109/78.934139. Google Scholar

[25]

P. PalumboS. Panunzi and A. De Gaetano, Qualitative behavior of a family of delay-differential models of the glucose-insulin system, Discrete Continuous Dynam. Systems -B, 7 (2007), 399-424. Google Scholar

[26]

P. PalumboP. PepeP. Panunzi and A. De Gaetano, Time-delay model-based control of the glucose -insulin system, by means of a state observer, Eur J Control, 18 (2012), 591-606. doi: 10.3166/EJC.18.591-606. Google Scholar

[27]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694. doi: 10.1016/S0005-1098(03)00167-5. Google Scholar

[28] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3108-8. Google Scholar
[29]

R. TamiD. Boutat and G. Zheng, Extended output depending normal form, Automatica, 49 (2013), 2192-2198. doi: 10.1016/j.automatica.2013.03.025. Google Scholar

[30]

M. V. Thuan and V. N. Phat, New criteria for stability and stabilization of neural networks with mixed interval time-varying delay, Vietnam Journal of Mathematics, 40 (2012), 79-93. Google Scholar

[31]

M. V. ThuanV. N. PhatT. Fernando and H. Trinh, Exponential stabilization of time-varying delay systems with non-linear perturbation, IMA J. Math. Control Inf., 31 (2014), 441-464. doi: 10.1093/imamci/dnt022. Google Scholar

[32]

H. Trinh, Linear functional state observer for time-delay systems, Int. J. Control, 72 (1999), 1642-1658. doi: 10.1080/002071799219986. Google Scholar

[33] H. Trinh and T. Fernando, Functional Observers for Dynamical Systems, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-24064-5. Google Scholar
[34]

Z. WangJ. Lam and X. Liu, Filtering for a class of nonlinear discrete-time stochastic systems with state delays, Journal of Computational and Applied Mathematics, 201 (2007), 153-163. doi: 10.1016/j.cam.2006.02.009. Google Scholar

[35]

Z. XiangS. Liu and M. S. Mahmoud, Robust $ H_{∞} $ reliable control for uncertain switched neutral systems with distributed delay, IMA J. Math. Control Inf., 32 (2015), 1-19. doi: 10.1093/imamci/dnt031. Google Scholar

[36]

H. Zhang and J. Wang, State estimation of discrete-time Takagi-Sugeno fuzzy systems in a network environment, IEEE Trans. Cybern., 45 (2015), 1525-1536. doi: 10.1109/TCYB.2014.2354431. Google Scholar

[37]

G. Zhao and J. Wang, Reset observers for linear time-varying delay systems: Delay-dependent approach, J. Frankl. Inst., 351 (2014), 5133-5147. doi: 10.1016/j.jfranklin.2014.08.011. Google Scholar

[38]

Y. Zhao and Z. Feng, Desynchronization in synchronous multi-coupled chaotic neurons by mix-adaptive feedback control, J. Biol. Dyn., 7 (2013), 1-10. doi: 10.1080/17513758.2012.733426. Google Scholar

show all references

References:
[1]

M. Boutayeb, Observer design for linear time-delay systems, Syst. & Contr. Letters, 44 (2001), 103-109. doi: 10.1016/S0167-6911(01)00129-3. Google Scholar

[2]

D. BoutatA. BenaliH. Hammouri and K. Busawon, New algorithm for observer error linearization with a diffeomorphism on the outputs, Automatica, 45 (2009), 2187-2193. doi: 10.1016/j.automatica.2009.05.030. Google Scholar

[3]

D. BoutatL. Boutat-Baddas and M. Darouach, A new reduced-order observer normal form for nonlinear discrete time systems, Systems & Control Letters, 61 (2012), 1003-1008. doi: 10.1016/j.sysconle.2012.07.007. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611970777. Google Scholar

[5]

F. CacaceA. Germani and C. Manes, An observer for a class of nonlinear systems with time varying observation delay, Systems & Control Letters, 59 (2010), 305-312. doi: 10.1016/j.sysconle.2010.03.005. Google Scholar

[6]

M. Darouach, Linear functional observers for systems with delays in state variables, IEEE Trans. Automat. Control, 46 (2001), 491-496. doi: 10.1109/9.911430. Google Scholar

[7]

F. W. Fairman and A. Kumar, Delayless observers for systems with delay, IEEE Trans. Automat. Control, 31 (1986), 258-259. doi: 10.1109/TAC.1986.1104228. Google Scholar

[8]

H. Gao and X. Li, $ H_{∞} $ filtering for discrete-time state-delayed systems with finite frequency specifications, IEEE Trans. Automat. Control, 56 (2001), 2935-2941. doi: 10.1109/TAC.2011.2159909. Google Scholar

[9] K. GuV. L. Kharitonov and J. Chen, Stability of Time-delay Systems, Springer, Birkhäuser Boston, 2003. doi: 10.1007/978-1-4612-0039-0. Google Scholar
[10] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar
[11]

M. Hou and A. C. Pugh, Observer with linear error dynamics for nonlinear multi-output systems, Systems & Control Letters, 37 (1999), 1-9. doi: 10.1016/S0167-6911(98)00105-4. Google Scholar

[12]

M. HouP. Zitek and R. J. Patton, An observer design for linear time-delay systems, IEEE Transactions on Automatic Control, 47 (2002), 121-125. doi: 10.1109/9.981730. Google Scholar

[13]

D. C. HuongH. TrinhH. M. Tran and T. Fernando, Approach to fault detection of time-delay systems using functional observers, Electronic Letters, 50 (2014), 1132-1134. doi: 10.1049/el.2014.1480. Google Scholar

[14]

D. C. Huong and H. Trinh, Method for computing state transformations of time-delay systems, IET Control Theory & Applications, 9 (2015), 2405-2413. doi: 10.1049/iet-cta.2015.0108. Google Scholar

[15]

A. J. Krener, Linearization by output injection and nonlinear observers, Syst. & Contr. Letters, 3 (1983), 47-52. doi: 10.1016/0167-6911(83)90037-3. Google Scholar

[16]

A. J. Krener and W. Respondek, Nonlinear observers with Linearization error dynamics, Siam J. Control Optimization, 23 (1985), 197-216. doi: 10.1137/0323016. Google Scholar

[17]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993. Google Scholar

[18]

M. Malek-Zavarei and M. Jamshidi, Time-delay Systems: Analysis Optimization and Applications North-Holland Systems and Control Series, 9. North-Holland Publishing Co. , Amsterdam, 1987. Google Scholar

[19]

S. Mondie and V. L. Kharitonov, Exponential estimates for retarded time-delay systems: An LMI approach, IEEE Trans. Automat. Control, 50 (2005), 268-273. doi: 10.1109/TAC.2004.841916. Google Scholar

[20]

P. T. NamP. N. Pathirana and H. Trinh, ϵ-bounded state estimation for time-delay systems with bounded disturbances, Int. J. Control, 87 (2014), 1747-1756. doi: 10.1080/00207179.2014.884727. Google Scholar

[21]

P. T. NamP. N. Pathirana and H. Trinh, Linear functional state bounding for perturbed time-delay systems and its application, IMA J. Math. Control Inf., 32 (2015), 245-255. doi: 10.1093/imamci/dnt039. Google Scholar

[22]

P. Niamsup and V. N. Phat, A Novel Exponential Stability Condition for a Class of Hybrid Neural Networks with Time-varying Delay, Vietnam Journal of Mathematics, 38 (2010), 341-351. Google Scholar

[23]

P. Niamsup and V. N. Phat, State Feedback Guaranteed Cost Controller for Nonlinear Time-Varying Delay Systems, Vietnam Journal of Mathematics, 43 (2015), 215-228. doi: 10.1007/s10013-014-0108-9. Google Scholar

[24]

R. M. PalharesC. E. de Souza and P. L. D. Peres, Robust $ {{H}_{\infty }} $ filtering for uncertain discretetime state-delayed systems, IEEE Trans. Signal Processing, 49 (2001), 1696-1703. doi: 10.1109/78.934139. Google Scholar

[25]

P. PalumboS. Panunzi and A. De Gaetano, Qualitative behavior of a family of delay-differential models of the glucose-insulin system, Discrete Continuous Dynam. Systems -B, 7 (2007), 399-424. Google Scholar

[26]

P. PalumboP. PepeP. Panunzi and A. De Gaetano, Time-delay model-based control of the glucose -insulin system, by means of a state observer, Eur J Control, 18 (2012), 591-606. doi: 10.3166/EJC.18.591-606. Google Scholar

[27]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694. doi: 10.1016/S0005-1098(03)00167-5. Google Scholar

[28] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3108-8. Google Scholar
[29]

R. TamiD. Boutat and G. Zheng, Extended output depending normal form, Automatica, 49 (2013), 2192-2198. doi: 10.1016/j.automatica.2013.03.025. Google Scholar

[30]

M. V. Thuan and V. N. Phat, New criteria for stability and stabilization of neural networks with mixed interval time-varying delay, Vietnam Journal of Mathematics, 40 (2012), 79-93. Google Scholar

[31]

M. V. ThuanV. N. PhatT. Fernando and H. Trinh, Exponential stabilization of time-varying delay systems with non-linear perturbation, IMA J. Math. Control Inf., 31 (2014), 441-464. doi: 10.1093/imamci/dnt022. Google Scholar

[32]

H. Trinh, Linear functional state observer for time-delay systems, Int. J. Control, 72 (1999), 1642-1658. doi: 10.1080/002071799219986. Google Scholar

[33] H. Trinh and T. Fernando, Functional Observers for Dynamical Systems, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-24064-5. Google Scholar
[34]

Z. WangJ. Lam and X. Liu, Filtering for a class of nonlinear discrete-time stochastic systems with state delays, Journal of Computational and Applied Mathematics, 201 (2007), 153-163. doi: 10.1016/j.cam.2006.02.009. Google Scholar

[35]

Z. XiangS. Liu and M. S. Mahmoud, Robust $ H_{∞} $ reliable control for uncertain switched neutral systems with distributed delay, IMA J. Math. Control Inf., 32 (2015), 1-19. doi: 10.1093/imamci/dnt031. Google Scholar

[36]

H. Zhang and J. Wang, State estimation of discrete-time Takagi-Sugeno fuzzy systems in a network environment, IEEE Trans. Cybern., 45 (2015), 1525-1536. doi: 10.1109/TCYB.2014.2354431. Google Scholar

[37]

G. Zhao and J. Wang, Reset observers for linear time-varying delay systems: Delay-dependent approach, J. Frankl. Inst., 351 (2014), 5133-5147. doi: 10.1016/j.jfranklin.2014.08.011. Google Scholar

[38]

Y. Zhao and Z. Feng, Desynchronization in synchronous multi-coupled chaotic neurons by mix-adaptive feedback control, J. Biol. Dyn., 7 (2013), 1-10. doi: 10.1080/17513758.2012.733426. Google Scholar

Figure 1.  Responses of $\hat{x}_2(t-\tau(t))$ and $x_2(t-\tau(t))$
Figure 2.  Responses of $\hat{x}_3(t)$ and $x_3(t)$
Figure 3.  Responses of $\hat{x}_3(t)$ and $x_3(t)$
Figure 4.  Responses of $\hat{x}_4(t)$ and $x_4(t)$
Figure 5.  Responses of $\hat{x}_3(t)$ and $x_3(t)$
Figure 6.  Responses of $\hat{x}_4(t)$ and $x_4(t)$
[1]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[2]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[3]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[4]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[5]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[6]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[7]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[8]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[9]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[10]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[11]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[12]

Mohammad-Sahadet Hossain. Projection-based model reduction for time-varying descriptor systems: New results. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 73-90. doi: 10.3934/naco.2016.6.73

[13]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[14]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[15]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[16]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[17]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[18]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[19]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[20]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (5)
  • Cited by (0)

Other articles
by authors

[Back to Top]