April 2017, 10(2): 367-394. doi: 10.3934/dcdss.2017018

Variational principles for the topological pressure of measurable potentials

Mathematical Institute, University of Jena, Ernst-Abbe-Platz 2,07745 Jena, Germany

* Corresponding author: Marc Rauch

Received  October 2015 Revised  November 2016 Published  January 2017

Fund Project: This work was supported by the Deutsche Forschungsgemeinschhaft

We introduce notions of topological pressure for measurable potentials and prove corresponding variational principles. The formalism is then used to establish a Bowen formula for the Hausdorff dimension of cookie-cutters with discontinuous geometric potentials.

Citation: Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018
References:
[1]

C. Aliprantis and K. Border, Infinite Dimensional Analysis Third edition, Springer-Verlag, Berlin, 2006.

[2]

J. Barral and D.-J. Feng, Weighted thermodynamic formalism on subshifts and applications, Asian J. Math., 16 (2012), 319-352. doi: 10.4310/AJM.2012.v16.n2.a8.

[3]

M. Brin and A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. , Springer-Verlag, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.

[4]

Y.-L. CaoD.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.

[5]

J. Chen and Ya. B. Pesin, Dimension of non-conformal repellers: A survey, Nonlinearity, 23 (2010), R93-R114. doi: 10.1088/0951-7715/23/4/R01.

[6]

V. Climenhaga, Bowen's equation in the non-uniform setting, Ergodic Theory Dynam. Systems, 31 (2011), 1163-1182. doi: 10.1017/S0143385710000362.

[7]

T. Downarowicz and G. H. Zhang, Modeling potential as fiber entropy and pressure as entropy, Ergodic Theory Dynam. Systems, 35 (2015), 1165-1186. doi: 10.1017/etds.2013.95.

[8]

K. Falconer, Fractal Geometry Second edition, Wiley, Chichester, 2003. doi: 10.1002/0470013850.

[9]

K. Falconer, Techniques in Fractal Geometry Wiley, Chichester, 1997.

[10]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010.

[11]

D.-J. Feng and W. Huang, Variational principles for weighted topological pressure, J. Math. Pures Appl.(9), 106 (2016), 411-452. doi: 10.1016/j.matpur.2016.02.016.

[12]

F. Hofbauer, The box dimension of completely invariant subsets for expanding piecewise monotonic transformations, Monatsh. Math., 121 (1996), 199-211. doi: 10.1007/BF01298950.

[13]

G. Keller, Equilibrium States in Ergodic Theory Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9781107359987.

[14]

A. Klenke, Probability Theory First edition, Springer-Verlag, London, 2008. doi: 10.1007/978-1-84800-048-3.

[15]

A. Mummert, A variational principle for discontinuous potentials, Ergodic Theory Dynam. Systems, 27 (2007), 583-594. doi: 10.1017/S0143385706000642.

[16]

Ya. B. Pesin, Dimension Theory in Dynamical Systems Chicago Lectures in Mathematics, Contemporary views and applications, University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[17]

Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984), 50-63.

[18]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

[19]

P. Walters, An Introduction to Ergodic Theory First edition, Springer-Verlag, New York, 1982.

show all references

References:
[1]

C. Aliprantis and K. Border, Infinite Dimensional Analysis Third edition, Springer-Verlag, Berlin, 2006.

[2]

J. Barral and D.-J. Feng, Weighted thermodynamic formalism on subshifts and applications, Asian J. Math., 16 (2012), 319-352. doi: 10.4310/AJM.2012.v16.n2.a8.

[3]

M. Brin and A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. , Springer-Verlag, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.

[4]

Y.-L. CaoD.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.

[5]

J. Chen and Ya. B. Pesin, Dimension of non-conformal repellers: A survey, Nonlinearity, 23 (2010), R93-R114. doi: 10.1088/0951-7715/23/4/R01.

[6]

V. Climenhaga, Bowen's equation in the non-uniform setting, Ergodic Theory Dynam. Systems, 31 (2011), 1163-1182. doi: 10.1017/S0143385710000362.

[7]

T. Downarowicz and G. H. Zhang, Modeling potential as fiber entropy and pressure as entropy, Ergodic Theory Dynam. Systems, 35 (2015), 1165-1186. doi: 10.1017/etds.2013.95.

[8]

K. Falconer, Fractal Geometry Second edition, Wiley, Chichester, 2003. doi: 10.1002/0470013850.

[9]

K. Falconer, Techniques in Fractal Geometry Wiley, Chichester, 1997.

[10]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010.

[11]

D.-J. Feng and W. Huang, Variational principles for weighted topological pressure, J. Math. Pures Appl.(9), 106 (2016), 411-452. doi: 10.1016/j.matpur.2016.02.016.

[12]

F. Hofbauer, The box dimension of completely invariant subsets for expanding piecewise monotonic transformations, Monatsh. Math., 121 (1996), 199-211. doi: 10.1007/BF01298950.

[13]

G. Keller, Equilibrium States in Ergodic Theory Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9781107359987.

[14]

A. Klenke, Probability Theory First edition, Springer-Verlag, London, 2008. doi: 10.1007/978-1-84800-048-3.

[15]

A. Mummert, A variational principle for discontinuous potentials, Ergodic Theory Dynam. Systems, 27 (2007), 583-594. doi: 10.1017/S0143385706000642.

[16]

Ya. B. Pesin, Dimension Theory in Dynamical Systems Chicago Lectures in Mathematics, Contemporary views and applications, University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[17]

Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984), 50-63.

[18]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

[19]

P. Walters, An Introduction to Ergodic Theory First edition, Springer-Verlag, New York, 1982.

Figure 1.  A cookie cutter with discontinuous geometric potentials
Figure 2.  The function $T_i(x)$ for $\epsilon=1/8$
Figure 3.  The cookie-cutters $T_n$ approaching the limit cookie-cutter $T_\infty$
[1]

Jaume Llibre, Marco Antonio Teixeira. Regularization of discontinuous vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 235-241. doi: 10.3934/dcds.1997.3.235

[2]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[3]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[4]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2018112

[5]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[6]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[7]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[8]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[9]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[10]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[11]

Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279

[12]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[13]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[14]

G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118

[15]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[16]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[17]

Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72

[18]

Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821

[19]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[20]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (1)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]