• Previous Article
    A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket
  • DCDS-S Home
  • This Issue
  • Next Article
    A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory
April 2017, 10(2): 313-334. doi: 10.3934/dcdss.2017015

Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors

Gerhard Keller, Department Mathematik, Univ. Erlangen-Nuremberg, Cauerstr. 11, D-91058 Erlangen, Germany

Received  November 2015 Revised  November 2016 Published  January 2017

Fund Project: This work was funded by DFG grant Ke 514/8-1. It also profited from the activities of the DFG Scientific Network "Skew Product Dynamics and Multifractal Analysis" organized by Tobias Oertel-Jäger

Skew product systems with monotone one-dimensional fibre maps driven by piecewise expanding Markov interval maps may show the phenomenon of intermingled basins [1, 5, 16, 30]. To quantify the degree of intermingledness the uncertainty exponent [23] and the stability index [29, 20] were suggested and characterized (partially). Here we present an approach to evaluate/estimate these two quantities rigorously using thermodynamic formalism for the driving Markov map.

Citation: Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015
References:
[1]

J. AlexanderJ. A. YorkeZ. You and I. Kan, Riddled Basins, International Journal of Bifurcation and Chaos, 2 (1992), 795-813. doi: 10.1142/S0218127492000446.

[2]

V. Anagnostopoulou and T. Jäger, Nonautonomous saddle-node bifurcations: Random and deterministic forcing, Journal of Differential Equations, 253 (2012), 379-399. doi: 10.1016/j.jde.2012.03.016.

[3]

V. Baladi, Positive Transfer Operators and Decay of Correlations volume 16 of Advanced Series in Nonlinear Dynamics, World Scientific, 2000. doi: 10.1142/9789812813633.

[4]

T. Bedford, The box dimension of self-affine graphs and repellers, Nonlinearity, 2 (1999), 53-71. doi: 10.1088/0951-7715/2/1/005.

[5]

A. Bonifant and J. Milnor, Schwarzian derivatives and cylinder maps, In M. Lyubich and Yampolsky, editors, Fields Institute Communications: Holomorphic Dynamics and Renormalization, 53 (2008), 1-21.

[6]

R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys., 69 (1979), 1-17. doi: 10.1007/BF01941319.

[7]

I. Cornfeld, S. Fomin and Y. Sinai, Ergodic Theory Springer Verlag, 1982. doi: 10.1007/978-1-4615-6927-5.

[8]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer, 1993. doi: 10.1007/978-3-642-78043-1.

[9]

A. Dembo and T. Zajic, Large deviations: From empirical mean and measure to partial sums process, Stochastic Processes and their Applications, 57 (1995), 191-224. doi: 10.1016/0304-4149(94)00048-X.

[10]

A. Dembo and O. Zeitouni, Large Deviations, Techniques and Applications Springer, second edition, 1998. doi: 10.1007/978-1-4612-5320-4.

[11]

K. Duffy and M. Rodgers-Lee, Some useful functions for functional large deviations, Stochastics and Stochastic Reports, 76 (2004), 267-279. doi: 10.1080/10451120410001720434.

[12]

A. Ganesh and N. O'Connell, A large deviation principle with queueing applications, Stochastics and Stochastic Reports, 73 (2002), 25-35. doi: 10.1080/10451120212871.

[13]

C. GrebogiS. W. McDonaldE. Ott and J. A. Yorke, Exterior dimension of fat fractals, Phys. Lett. A, 110 (1985), 1-4. doi: 10.1016/0375-9601(85)90220-8.

[14]

F. HofbauerJ. HofbauerP. Raith and T. Steinberger, Intermingled basins in a two species system, Journal of Mathematical Biology, 49 (2004), 293-309. doi: 10.1007/s00285-003-0253-3.

[15]

T. Jäger, Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255. doi: 10.1088/0951-7715/16/4/303.

[16]

I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bulletin of the American Mathematical Society, 31 (1994), 68-74. doi: 10.1090/S0273-0979-1994-00507-5.

[17]

G. Keller, Equilibrium States in Ergodic Theory volume 42 of LMS Student Texts, Cambridge University Press, 1998. doi: 10.1017/CBO9781107359987.

[18]

G. Keller, An elementary proof for the dimension of the graph of the classical Weierstrass function, http://arxiv.org/abs/1406.3571v4(to appear in Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques), 2014.

[19]

G. Keller, Stability index for chaotically driven concave maps, J. London Math. Soc.(2), 89 (2014), 603-622. doi: 10.1112/jlms/jdt070.

[20]

U. A. Mohd Roslan, Stability Index for Riddled Basins of Attraction with Applications to Skew Product Systems PhD thesis, University of Exeter, 2015.

[21]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Inventiones Mathematicae, 132 (1998), 633-680. doi: 10.1007/s002220050236.

[22]

E. OttJ. AlexanderI. KanJ. Sommerer and J. Yorke, The transition to chaotic attractors with riddled basins, Physica D: Nonlinear Phenomena, 76 (1994), 384-410. doi: 10.1016/0167-2789(94)90047-7.

[23]

E. OttJ. SommererJ. AlexanderI. Kan and J. Yorke, Scaling behavior of chaotic systems with riddled basins, Physical Review Letters, 71 (1993), 4134-4137. doi: 10.1103/PhysRevLett.71.4134.

[24]

W. OttM. Stenlund and L. Young, Memory loss for time-dependent dynamical systems, Math. Research Letters, 16 (2009), 463-475. doi: 10.4310/MRL.2009.v16.n3.a7.

[25]

W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics volume 187-188 of Astérisque, Société Mathématique de France, 1990.

[26]

R. F. PereiraS. CamargoS. E. DeS. R. Lopes and R. L. Viana, Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, 78 (2008), 1-10. doi: 10.1103/PhysRevE.78.056214.

[27]

Y. Pesin, Dimension Theory in Dynamical Systems The University of Chicago Press, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[28]

D. Plachky and J. Steinebach, A theorem about probabilities of large deviations with an application to queuing theory, Periodica Mathematica Hungarica, 6 (1975), 343-345. doi: 10.1007/BF02017929.

[29]

O. Podvigina and P. Ashwin, On local attraction properties and a stability index for heteroclinic connections, Nonlinearity, 24 (2011), 887-929. doi: 10.1088/0951-7715/24/3/009.

[30]

J. C. Sommerer and E. Ott, A physical system with qualitatively uncertain dynamics, Nature, 365 (1993), 138-140. doi: 10.1038/365138a0.

show all references

References:
[1]

J. AlexanderJ. A. YorkeZ. You and I. Kan, Riddled Basins, International Journal of Bifurcation and Chaos, 2 (1992), 795-813. doi: 10.1142/S0218127492000446.

[2]

V. Anagnostopoulou and T. Jäger, Nonautonomous saddle-node bifurcations: Random and deterministic forcing, Journal of Differential Equations, 253 (2012), 379-399. doi: 10.1016/j.jde.2012.03.016.

[3]

V. Baladi, Positive Transfer Operators and Decay of Correlations volume 16 of Advanced Series in Nonlinear Dynamics, World Scientific, 2000. doi: 10.1142/9789812813633.

[4]

T. Bedford, The box dimension of self-affine graphs and repellers, Nonlinearity, 2 (1999), 53-71. doi: 10.1088/0951-7715/2/1/005.

[5]

A. Bonifant and J. Milnor, Schwarzian derivatives and cylinder maps, In M. Lyubich and Yampolsky, editors, Fields Institute Communications: Holomorphic Dynamics and Renormalization, 53 (2008), 1-21.

[6]

R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys., 69 (1979), 1-17. doi: 10.1007/BF01941319.

[7]

I. Cornfeld, S. Fomin and Y. Sinai, Ergodic Theory Springer Verlag, 1982. doi: 10.1007/978-1-4615-6927-5.

[8]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer, 1993. doi: 10.1007/978-3-642-78043-1.

[9]

A. Dembo and T. Zajic, Large deviations: From empirical mean and measure to partial sums process, Stochastic Processes and their Applications, 57 (1995), 191-224. doi: 10.1016/0304-4149(94)00048-X.

[10]

A. Dembo and O. Zeitouni, Large Deviations, Techniques and Applications Springer, second edition, 1998. doi: 10.1007/978-1-4612-5320-4.

[11]

K. Duffy and M. Rodgers-Lee, Some useful functions for functional large deviations, Stochastics and Stochastic Reports, 76 (2004), 267-279. doi: 10.1080/10451120410001720434.

[12]

A. Ganesh and N. O'Connell, A large deviation principle with queueing applications, Stochastics and Stochastic Reports, 73 (2002), 25-35. doi: 10.1080/10451120212871.

[13]

C. GrebogiS. W. McDonaldE. Ott and J. A. Yorke, Exterior dimension of fat fractals, Phys. Lett. A, 110 (1985), 1-4. doi: 10.1016/0375-9601(85)90220-8.

[14]

F. HofbauerJ. HofbauerP. Raith and T. Steinberger, Intermingled basins in a two species system, Journal of Mathematical Biology, 49 (2004), 293-309. doi: 10.1007/s00285-003-0253-3.

[15]

T. Jäger, Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255. doi: 10.1088/0951-7715/16/4/303.

[16]

I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bulletin of the American Mathematical Society, 31 (1994), 68-74. doi: 10.1090/S0273-0979-1994-00507-5.

[17]

G. Keller, Equilibrium States in Ergodic Theory volume 42 of LMS Student Texts, Cambridge University Press, 1998. doi: 10.1017/CBO9781107359987.

[18]

G. Keller, An elementary proof for the dimension of the graph of the classical Weierstrass function, http://arxiv.org/abs/1406.3571v4(to appear in Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques), 2014.

[19]

G. Keller, Stability index for chaotically driven concave maps, J. London Math. Soc.(2), 89 (2014), 603-622. doi: 10.1112/jlms/jdt070.

[20]

U. A. Mohd Roslan, Stability Index for Riddled Basins of Attraction with Applications to Skew Product Systems PhD thesis, University of Exeter, 2015.

[21]

T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Inventiones Mathematicae, 132 (1998), 633-680. doi: 10.1007/s002220050236.

[22]

E. OttJ. AlexanderI. KanJ. Sommerer and J. Yorke, The transition to chaotic attractors with riddled basins, Physica D: Nonlinear Phenomena, 76 (1994), 384-410. doi: 10.1016/0167-2789(94)90047-7.

[23]

E. OttJ. SommererJ. AlexanderI. Kan and J. Yorke, Scaling behavior of chaotic systems with riddled basins, Physical Review Letters, 71 (1993), 4134-4137. doi: 10.1103/PhysRevLett.71.4134.

[24]

W. OttM. Stenlund and L. Young, Memory loss for time-dependent dynamical systems, Math. Research Letters, 16 (2009), 463-475. doi: 10.4310/MRL.2009.v16.n3.a7.

[25]

W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics volume 187-188 of Astérisque, Société Mathématique de France, 1990.

[26]

R. F. PereiraS. CamargoS. E. DeS. R. Lopes and R. L. Viana, Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, 78 (2008), 1-10. doi: 10.1103/PhysRevE.78.056214.

[27]

Y. Pesin, Dimension Theory in Dynamical Systems The University of Chicago Press, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[28]

D. Plachky and J. Steinebach, A theorem about probabilities of large deviations with an application to queuing theory, Periodica Mathematica Hungarica, 6 (1975), 343-345. doi: 10.1007/BF02017929.

[29]

O. Podvigina and P. Ashwin, On local attraction properties and a stability index for heteroclinic connections, Nonlinearity, 24 (2011), 887-929. doi: 10.1088/0951-7715/24/3/009.

[30]

J. C. Sommerer and E. Ott, A physical system with qualitatively uncertain dynamics, Nature, 365 (1993), 138-140. doi: 10.1038/365138a0.

Figure 1.  The critical graph $\varphi_c$ for various choices of the parameter $a$ in Example 2.3
[1]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

[2]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[3]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[4]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[5]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[6]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[7]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[8]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[9]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[10]

Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279

[11]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[12]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[13]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[14]

Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72

[15]

Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821

[16]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[17]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[18]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[19]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[20]

Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (8)
  • HTML views (90)
  • Cited by (2)

Other articles
by authors

[Back to Top]