-
Previous Article
Wave breaking and persistent decay of solution to a shallow water wave equation
- DCDS-S Home
- This Issue
-
Next Article
Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations
Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space
1. | School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan |
2. | School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China |
References:
[1] |
L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations,, Differential Integral Equations, 15 (2002), 1129.
|
[2] |
H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer Heidelberg Dordrecht London New York, (2011).
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction,, Springer-Verlag, (1976).
|
[4] |
Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.
doi: 10.1016/j.jde.2011.09.035. |
[5] |
C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.
doi: 10.1016/j.jde.2009.09.020. |
[6] |
B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).
doi: 10.1063/1.3245862. |
[7] |
B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.
doi: 10.1016/j.na.2010.06.029. |
[8] |
B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Anal., 11 (2010), 2415.
doi: 10.1016/j.nonrwa.2009.07.013. |
[9] |
A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.
|
[10] |
D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space,, Comm.Pura Appl, 13 (2014), 585.
doi: 10.3934/cpaa.2014.13.585. |
[11] |
G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Eng. Sci., 15 (1977), 105.
doi: 10.1016/0020-7225(77)90025-8. |
[12] |
S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space,, Nonlinear Anal., 12 (2011), 2142.
doi: 10.1016/j.nonrwa.2010.12.028. |
[13] |
I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2395919. |
[14] |
O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, Gorden Brech, (1969). |
[15] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hill/CRC, (2002).
doi: 10.1201/9781420035674. |
[16] |
P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics,, Oxford University Press Inc. New York, (1996).
|
[17] |
G. Lukaszewicz, Micropolar Fluids,, Birkhäuser, (1999).
doi: 10.1007/978-1-4612-0641-5. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83.
|
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105.
|
[20] |
E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations,, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27.
doi: 10.4171/RSMUP/122-3. |
[21] |
M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions,, Rev. Mat. Complut., 11 (1998), 443.
doi: 10.5209/rev_REMA.1998.v11.n2.17276. |
[22] |
Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient,, Nonlinear Anal., 118 (2015), 1.
doi: 10.1016/j.na.2015.01.011. |
[23] |
Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations,, J. Appl. Math., (2012).
doi: 10.1016/j.nonrwa.2011.12.018. |
[24] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Methods Appl. Sci., 28 (2005), 1507.
doi: 10.1002/mma.617. |
[25] |
B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space,, Amer. Math. Soc., 138 (2010), 2025.
doi: 10.1090/S0002-9939-10-10232-9. |
[26] |
B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations,, Acta Math. Sci., 30 (2010), 1469.
doi: 10.1016/S0252-9602(10)60139-7. |
[27] |
H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations,, Int. J. Appl. Anal., (2014).
doi: 10.1155/2014/386269. |
[28] |
Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.
doi: 10.1016/j.matpur.2005.07.003. |
[29] |
Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.
doi: 10.1088/0951-7715/23/5/004. |
show all references
References:
[1] |
L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations,, Differential Integral Equations, 15 (2002), 1129.
|
[2] |
H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer Heidelberg Dordrecht London New York, (2011).
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction,, Springer-Verlag, (1976).
|
[4] |
Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.
doi: 10.1016/j.jde.2011.09.035. |
[5] |
C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.
doi: 10.1016/j.jde.2009.09.020. |
[6] |
B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).
doi: 10.1063/1.3245862. |
[7] |
B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.
doi: 10.1016/j.na.2010.06.029. |
[8] |
B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Anal., 11 (2010), 2415.
doi: 10.1016/j.nonrwa.2009.07.013. |
[9] |
A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.
|
[10] |
D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space,, Comm.Pura Appl, 13 (2014), 585.
doi: 10.3934/cpaa.2014.13.585. |
[11] |
G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Eng. Sci., 15 (1977), 105.
doi: 10.1016/0020-7225(77)90025-8. |
[12] |
S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space,, Nonlinear Anal., 12 (2011), 2142.
doi: 10.1016/j.nonrwa.2010.12.028. |
[13] |
I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2395919. |
[14] |
O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, Gorden Brech, (1969). |
[15] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hill/CRC, (2002).
doi: 10.1201/9781420035674. |
[16] |
P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics,, Oxford University Press Inc. New York, (1996).
|
[17] |
G. Lukaszewicz, Micropolar Fluids,, Birkhäuser, (1999).
doi: 10.1007/978-1-4612-0641-5. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83.
|
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105.
|
[20] |
E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations,, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27.
doi: 10.4171/RSMUP/122-3. |
[21] |
M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions,, Rev. Mat. Complut., 11 (1998), 443.
doi: 10.5209/rev_REMA.1998.v11.n2.17276. |
[22] |
Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient,, Nonlinear Anal., 118 (2015), 1.
doi: 10.1016/j.na.2015.01.011. |
[23] |
Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations,, J. Appl. Math., (2012).
doi: 10.1016/j.nonrwa.2011.12.018. |
[24] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Methods Appl. Sci., 28 (2005), 1507.
doi: 10.1002/mma.617. |
[25] |
B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space,, Amer. Math. Soc., 138 (2010), 2025.
doi: 10.1090/S0002-9939-10-10232-9. |
[26] |
B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations,, Acta Math. Sci., 30 (2010), 1469.
doi: 10.1016/S0252-9602(10)60139-7. |
[27] |
H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations,, Int. J. Appl. Anal., (2014).
doi: 10.1155/2014/386269. |
[28] |
Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.
doi: 10.1016/j.matpur.2005.07.003. |
[29] |
Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.
doi: 10.1088/0951-7715/23/5/004. |
[1] |
Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583 |
[2] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[3] |
Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641 |
[4] |
Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381 |
[5] |
Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923 |
[6] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[7] |
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873 |
[8] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[9] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[10] |
Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733 |
[11] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[12] |
Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465 |
[13] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[14] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[15] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[16] |
Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327 |
[17] |
Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139 |
[18] |
Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831 |
[19] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[20] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
2016 Impact Factor: 0.781
Tools
Metrics
Other articles
by authors
[Back to Top]