August  2016, 9(4): 1201-1234. doi: 10.3934/dcdss.2016049

Forced linear oscillators and the dynamics of Euclidean group extensions

1. 

Department of Mathematics, Rutgers University, Camden NJ 08102, United States

Received  November 2015 Revised  February 2016 Published  August 2016

We study the generic dynamical behaviour of skew-product extensions generated by cocycles arising from equations of forced linear oscillators of special form. This work extends our earlier work on cocycles into compact Lie groups arising from differential equations of special form, (cf. [21]), to the case of non-compact fiber groups of Euclidean type. The earlier techniques do not work in the non-compact case. In the non-compact case one of the main obstacle is the lack of `recurrence'. Thus, our approach to studying Euclidean group extensions is : (i) first, to use a `twisted version' of the so called `conjugation approximation method' and then (ii) to use `geometric-control theoretic methods' developed in our earlier work (cf. [20] and [21]). Even then, our arguments only work for base flows that admit a global Poincaé section, (e.g. for the irrational rotation flows on tori and for certain nil flows). We apply these results to study generic spectral behaviour of the forced quantum harmonic oscillator with time dependent stationary force restricted to satisfy given constraints.
Citation: Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049
References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows,, J. of Diff Geometry, 89 (2011), 369. Google Scholar

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory,, Trans. Moscow Math. Soc., 23 (1970), 1. Google Scholar

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits,, Nonlinearity, 10 (1997), 595. doi: 10.1088/0951-7715/10/3/002. Google Scholar

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems,, Nonlinearity, 14 (2001), 275. doi: 10.1088/0951-7715/14/2/306. Google Scholar

[5]

J. Bellisard, Stability and instability in quantum mechanics,, Trends and developments in the eighties (Bielefeld, (1982), 1. Google Scholar

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators,, Journal of Statistical Physics, 62 (1991), 793. doi: 10.1007/BF01017984. Google Scholar

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator,, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67. Google Scholar

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows,, Proc. London Math. Soc., 72 (1996), 657. doi: 10.1112/plms/s3-72.3.657. Google Scholar

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321. doi: 10.1007/BF02760611. Google Scholar

[10]

M. Herman, Construction de diffeomorphismes ergodiques,, preprint., (). Google Scholar

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson),, Journal of Dynamics and Differential Equations, 4 (1992), 259. doi: 10.1007/BF01049388. Google Scholar

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions,, Springer Verlag Lecture Note in Math., 668 (1978), 173. Google Scholar

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos,, Chaos, 1 (1991), 114. doi: 10.1063/1.165809. Google Scholar

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes,, Colloquium Mathematicum, 84/85 (2000), 75. Google Scholar

[15]

E. Merzbacher, Quantum Mechanics, 5th edition,, Wiley, (1965). Google Scholar

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems,, Ergodic Theory and Dynamical Systems, 29 (2009), 1582. doi: 10.1017/S0143385708000886. Google Scholar

[17]

M. Nerurkar, On the construction of smooth ergodic skew products,, Ergodic Theory and Dynamical Systems, 8 (1988), 311. doi: 10.1017/S0143385700004454. Google Scholar

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems,, J. of Discrete and Continuous Dynamical Systems, (2004), 114. Google Scholar

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes,, J. of Math. physics, 35 (1994), 628. doi: 10.1063/1.530657. Google Scholar

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann),, Israel Journal of Mathematics, 100 (1997), 309. doi: 10.1007/BF02773645. Google Scholar

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form,, Journal of Modern Dynamics, 1 (2007), 205. doi: 10.3934/jmd.2007.1.205. Google Scholar

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 25 (2005), 257. doi: 10.1017/S0143385704000471. Google Scholar

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups,, MacMillan of India, (1977). Google Scholar

show all references

References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows,, J. of Diff Geometry, 89 (2011), 369. Google Scholar

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory,, Trans. Moscow Math. Soc., 23 (1970), 1. Google Scholar

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits,, Nonlinearity, 10 (1997), 595. doi: 10.1088/0951-7715/10/3/002. Google Scholar

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems,, Nonlinearity, 14 (2001), 275. doi: 10.1088/0951-7715/14/2/306. Google Scholar

[5]

J. Bellisard, Stability and instability in quantum mechanics,, Trends and developments in the eighties (Bielefeld, (1982), 1. Google Scholar

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators,, Journal of Statistical Physics, 62 (1991), 793. doi: 10.1007/BF01017984. Google Scholar

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator,, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67. Google Scholar

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows,, Proc. London Math. Soc., 72 (1996), 657. doi: 10.1112/plms/s3-72.3.657. Google Scholar

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321. doi: 10.1007/BF02760611. Google Scholar

[10]

M. Herman, Construction de diffeomorphismes ergodiques,, preprint., (). Google Scholar

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson),, Journal of Dynamics and Differential Equations, 4 (1992), 259. doi: 10.1007/BF01049388. Google Scholar

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions,, Springer Verlag Lecture Note in Math., 668 (1978), 173. Google Scholar

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos,, Chaos, 1 (1991), 114. doi: 10.1063/1.165809. Google Scholar

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes,, Colloquium Mathematicum, 84/85 (2000), 75. Google Scholar

[15]

E. Merzbacher, Quantum Mechanics, 5th edition,, Wiley, (1965). Google Scholar

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems,, Ergodic Theory and Dynamical Systems, 29 (2009), 1582. doi: 10.1017/S0143385708000886. Google Scholar

[17]

M. Nerurkar, On the construction of smooth ergodic skew products,, Ergodic Theory and Dynamical Systems, 8 (1988), 311. doi: 10.1017/S0143385700004454. Google Scholar

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems,, J. of Discrete and Continuous Dynamical Systems, (2004), 114. Google Scholar

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes,, J. of Math. physics, 35 (1994), 628. doi: 10.1063/1.530657. Google Scholar

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann),, Israel Journal of Mathematics, 100 (1997), 309. doi: 10.1007/BF02773645. Google Scholar

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form,, Journal of Modern Dynamics, 1 (2007), 205. doi: 10.3934/jmd.2007.1.205. Google Scholar

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 25 (2005), 257. doi: 10.1017/S0143385704000471. Google Scholar

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups,, MacMillan of India, (1977). Google Scholar

[1]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[2]

Roy Adler, Bruce Kitchens, Michael Shub. Errata to "Stably ergodic skew products". Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 456-456. doi: 10.3934/dcds.1999.5.456

[3]

Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205

[4]

Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153

[5]

Kazuyuki Yagasaki. Degenerate resonances in forced oscillators. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 423-438. doi: 10.3934/dcdsb.2003.3.423

[6]

D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907

[7]

Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605

[8]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[9]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[10]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[11]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[12]

Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012

[13]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

[14]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[15]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[16]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[17]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[18]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[19]

Emmanuel Breuillard, Ben Green, Terence Tao. Linear approximate groups. Electronic Research Announcements, 2010, 17: 57-67. doi: 10.3934/era.2010.17.57

[20]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]