August  2016, 9(4): 1189-1199. doi: 10.3934/dcdss.2016048

Formulas for generalized principal Lyapunov exponent for parabolic PDEs

1. 

Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław

2. 

Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849

Received  August 2015 Revised  February 2016 Published  August 2016

An integral formula is given representing the generalized principal Lyapunov exponent for random linear parabolic PDEs. As an application, an upper estimate of the exponent is obtained.
Citation: Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048
References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide,, third edition, (2006). Google Scholar

[2]

J. Diestel and J. J. Uhl, Jr., Vector Measures,, with a foreword by B. J. Pettis, 15 (1977). Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Grad. Stud. Math., 19 (1998). Google Scholar

[4]

U. Krengel, Ergodic Theorems,, Walter de Gruyter, (1985). doi: 10.1515/9783110844641. Google Scholar

[5]

J. Mierczyński, Estimates for principal Lyapunov exponents: A survey,, Nonautonomous Dynamical Systems, 1 (2014), 137. Google Scholar

[6]

J. Mierczyński and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2008). doi: 10.1201/9781584888963. Google Scholar

[7]

J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory,, Trans. Amer. Math. Soc., 365 (2013), 5329. doi: 10.1090/S0002-9947-2013-05814-X. Google Scholar

[8]

J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. III. Parabolic equations and delay systems,, J. Dynam. Differential Equations, 28 (2016), 1039. doi: 10.1007/s10884-015-9436-z. Google Scholar

show all references

References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide,, third edition, (2006). Google Scholar

[2]

J. Diestel and J. J. Uhl, Jr., Vector Measures,, with a foreword by B. J. Pettis, 15 (1977). Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Grad. Stud. Math., 19 (1998). Google Scholar

[4]

U. Krengel, Ergodic Theorems,, Walter de Gruyter, (1985). doi: 10.1515/9783110844641. Google Scholar

[5]

J. Mierczyński, Estimates for principal Lyapunov exponents: A survey,, Nonautonomous Dynamical Systems, 1 (2014), 137. Google Scholar

[6]

J. Mierczyński and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2008). doi: 10.1201/9781584888963. Google Scholar

[7]

J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory,, Trans. Amer. Math. Soc., 365 (2013), 5329. doi: 10.1090/S0002-9947-2013-05814-X. Google Scholar

[8]

J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. III. Parabolic equations and delay systems,, J. Dynam. Differential Equations, 28 (2016), 1039. doi: 10.1007/s10884-015-9436-z. Google Scholar

[1]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[2]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[3]

Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107

[4]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[5]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[6]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[7]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[8]

J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81

[9]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[10]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[11]

Fang Chen, Ning Gao, Yao- Lin Jiang. On product-type generalized block AOR method for augmented linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 797-809. doi: 10.3934/naco.2012.2.797

[12]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[13]

Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231

[14]

Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661

[15]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[16]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[17]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[18]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[19]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[20]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]