August  2016, 9(4): 1109-1118. doi: 10.3934/dcdss.2016044

Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium

1. 

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom, United Kingdom

Received  March 2015 Revised  August 2015 Published  August 2016

The classical theorem of Moser, on the existence of a normal form in the neighbourhood of a hyperbolic equilibrium, is extended to a class of real-analytic Hamiltonians with aperiodically time-dependent perturbations. A stronger result is obtained in the case in which the perturbing function exhibits a time decay.
Citation: Alessandro Fortunati, Stephen Wiggins. Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1109-1118. doi: 10.3934/dcdss.2016044
References:
[1]

L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994). Google Scholar

[2]

A. Fortunati and S. Wiggins, Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence,, Regul. Chaotic Dyn., 19 (2014), 586. doi: 10.1134/S1560354714050062. Google Scholar

[3]

A. Fortunati and S. Wiggins, A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation,, Regul. Chaotic Dyn., 20 (2015), 476. doi: 10.1134/S1560354715040061. Google Scholar

[4]

G. Gallavotti, Hamilton-Jacobi's equation and Arnold's diffusion near invariant tori in a priori unstable isochronous systems,, Rend. Sem. Mat. Univ. Politec. Torino, 55 (1997), 291. Google Scholar

[5]

A. Giorgilli, On a Theorem of Lyapounov,, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, 146 (2012), 133. Google Scholar

[6]

A. Giorgilli, Persistence of invariant tori.,, , (). Google Scholar

[7]

A. Giorgilli, Exponential stability of Hamiltonian systems,, in Dynamical systems. Part I, (2003), 87. Google Scholar

[8]

A. Giorgilli and E. Zehnder, Exponential stability for time dependent potentials,, Z. Angew. Math. Phys., 43 (1992), 827. doi: 10.1007/BF00913410. Google Scholar

[9]

J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point,, Comm. Pure Appl. Math., 9 (1956), 673. doi: 10.1002/cpa.3160090404. Google Scholar

show all references

References:
[1]

L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994). Google Scholar

[2]

A. Fortunati and S. Wiggins, Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence,, Regul. Chaotic Dyn., 19 (2014), 586. doi: 10.1134/S1560354714050062. Google Scholar

[3]

A. Fortunati and S. Wiggins, A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation,, Regul. Chaotic Dyn., 20 (2015), 476. doi: 10.1134/S1560354715040061. Google Scholar

[4]

G. Gallavotti, Hamilton-Jacobi's equation and Arnold's diffusion near invariant tori in a priori unstable isochronous systems,, Rend. Sem. Mat. Univ. Politec. Torino, 55 (1997), 291. Google Scholar

[5]

A. Giorgilli, On a Theorem of Lyapounov,, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, 146 (2012), 133. Google Scholar

[6]

A. Giorgilli, Persistence of invariant tori.,, , (). Google Scholar

[7]

A. Giorgilli, Exponential stability of Hamiltonian systems,, in Dynamical systems. Part I, (2003), 87. Google Scholar

[8]

A. Giorgilli and E. Zehnder, Exponential stability for time dependent potentials,, Z. Angew. Math. Phys., 43 (1992), 827. doi: 10.1007/BF00913410. Google Scholar

[9]

J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point,, Comm. Pure Appl. Math., 9 (1956), 673. doi: 10.1002/cpa.3160090404. Google Scholar

[1]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[2]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[3]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[4]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-927. doi: 10.3934/dcdss.2019061

[5]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[6]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[7]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[8]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[9]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[10]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[11]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[12]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[13]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[14]

Y. Peng, X. Xiang. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. Journal of Industrial & Management Optimization, 2008, 4 (1) : 17-32. doi: 10.3934/jimo.2008.4.17

[15]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[16]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[17]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[18]

Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224

[19]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[20]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]