August  2016, 9(4): 1009-1023. doi: 10.3934/dcdss.2016039

Characterizations of uniform hyperbolicity and spectra of CMV matrices

1. 

Department of Mathematics, Rice University, Houston, TX 77005, United States

2. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States

3. 

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada

Received  September 2014 Revised  July 2015 Published  August 2016

We provide an elementary proof of the equivalence of various notions of uniform hyperbolicity for a class of GL$(2,\mathbb{C})$ cocycles and establish a Johnson-type theorem for extended CMV matrices, relating the spectrum to the set of points on the unit circle for which the associated Szegő cocycle is not uniformly hyperbolic.
Citation: David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039
References:
[1]

Ju. M. Berezanskii, Expansions in Eigenfuncions of Selfadjoint Operators,, Amer. Math. Soc., (1968). Google Scholar

[2]

J. Bochi and N. Gourmelon, Some characterizations of domination,, Math. Z., 263 (2009), 221. doi: 10.1007/s00209-009-0494-y. Google Scholar

[3]

D. Damanik, J. Fillman, M. Lukic and W. Yessen, Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model,, Int. Math. Res. Not., 2015 (2015), 7110. doi: 10.1093/imrn/rnu158. Google Scholar

[4]

D. Damanik, J. Fillman and D. C. Ong, Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices,, J. Math. Pures Appl., 105 (2016), 293. doi: 10.1016/j.matpur.2015.11.002. Google Scholar

[5]

J. Geronimo and R. Johnson, Rotation number associated with difference equations satisfied by polynomials orthogonal on the unit circle,, J. Differential Equations, 132 (1996), 140. doi: 10.1006/jdeq.1996.0175. Google Scholar

[6]

F. Gesztesy and M. Zinchenko, Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle,, J. Approx. Theory, 139 (2006), 172. doi: 10.1016/j.jat.2005.08.002. Google Scholar

[7]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients,, J. Diff. Eq., 61 (1986), 54. doi: 10.1016/0022-0396(86)90125-7. Google Scholar

[8]

Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators,, Invent. Math., 135 (1999), 329. doi: 10.1007/s002220050288. Google Scholar

[9]

M. Lukic and D. Ong, Generalized Prüfer variables for perturbations of Jacobi and CMV matrices,, J. Math. Anal. Appl., (). Google Scholar

[10]

P. Munger and D. Ong, The Hölder continuity of spectral measures of an extended CMV matrix,, J. Math. Phys., 55 (2014). doi: 10.1063/1.4895762. Google Scholar

[11]

D. Ong, Purely singular continuous spectrum for CMV operators generated by subshifts,, J. Stat. Phys., 155 (2014), 763. doi: 10.1007/s10955-014-0974-2. Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis,, Academic Press, (1972). Google Scholar

[13]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems I.,, J. Diff. Eq., 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9. Google Scholar

[14]

R. Sacker and G. Sell, A spectral theory for linear differential systems,, J. Diff. Eq., 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[15]

J. Selgrade, Isolated invariant sets for flows on vector bundles,, Trans. Amer. Math. Soc., 203 (1975), 359. doi: 10.1090/S0002-9947-1975-0368080-X. Google Scholar

[16]

B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory,, American Mathematical Society Colloquium Publications 54, 54 (2005). Google Scholar

[17]

J.-C. Yoccoz, Some questions and remarks about SL$(2,\mathbbR)$ cocycles,, Modern Dynamical Systems and Applications, (2004), 447. Google Scholar

[18]

Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity,, preprint, (). Google Scholar

show all references

References:
[1]

Ju. M. Berezanskii, Expansions in Eigenfuncions of Selfadjoint Operators,, Amer. Math. Soc., (1968). Google Scholar

[2]

J. Bochi and N. Gourmelon, Some characterizations of domination,, Math. Z., 263 (2009), 221. doi: 10.1007/s00209-009-0494-y. Google Scholar

[3]

D. Damanik, J. Fillman, M. Lukic and W. Yessen, Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model,, Int. Math. Res. Not., 2015 (2015), 7110. doi: 10.1093/imrn/rnu158. Google Scholar

[4]

D. Damanik, J. Fillman and D. C. Ong, Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices,, J. Math. Pures Appl., 105 (2016), 293. doi: 10.1016/j.matpur.2015.11.002. Google Scholar

[5]

J. Geronimo and R. Johnson, Rotation number associated with difference equations satisfied by polynomials orthogonal on the unit circle,, J. Differential Equations, 132 (1996), 140. doi: 10.1006/jdeq.1996.0175. Google Scholar

[6]

F. Gesztesy and M. Zinchenko, Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle,, J. Approx. Theory, 139 (2006), 172. doi: 10.1016/j.jat.2005.08.002. Google Scholar

[7]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients,, J. Diff. Eq., 61 (1986), 54. doi: 10.1016/0022-0396(86)90125-7. Google Scholar

[8]

Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators,, Invent. Math., 135 (1999), 329. doi: 10.1007/s002220050288. Google Scholar

[9]

M. Lukic and D. Ong, Generalized Prüfer variables for perturbations of Jacobi and CMV matrices,, J. Math. Anal. Appl., (). Google Scholar

[10]

P. Munger and D. Ong, The Hölder continuity of spectral measures of an extended CMV matrix,, J. Math. Phys., 55 (2014). doi: 10.1063/1.4895762. Google Scholar

[11]

D. Ong, Purely singular continuous spectrum for CMV operators generated by subshifts,, J. Stat. Phys., 155 (2014), 763. doi: 10.1007/s10955-014-0974-2. Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis,, Academic Press, (1972). Google Scholar

[13]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems I.,, J. Diff. Eq., 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9. Google Scholar

[14]

R. Sacker and G. Sell, A spectral theory for linear differential systems,, J. Diff. Eq., 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[15]

J. Selgrade, Isolated invariant sets for flows on vector bundles,, Trans. Amer. Math. Soc., 203 (1975), 359. doi: 10.1090/S0002-9947-1975-0368080-X. Google Scholar

[16]

B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory,, American Mathematical Society Colloquium Publications 54, 54 (2005). Google Scholar

[17]

J.-C. Yoccoz, Some questions and remarks about SL$(2,\mathbbR)$ cocycles,, Modern Dynamical Systems and Applications, (2004), 447. Google Scholar

[18]

Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity,, preprint, (). Google Scholar

[1]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[2]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[3]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[4]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[5]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[6]

Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605

[7]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[8]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[9]

Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419

[10]

Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205

[11]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[12]

Kishan Chand Gupta, Sumit Kumar Pandey, Indranil Ghosh Ray, Susanta Samanta. Cryptographically significant mds matrices over finite fields: A brief survey and some generalized results. Advances in Mathematics of Communications, 2019, 13 (4) : 779-843. doi: 10.3934/amc.2019045

[13]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[14]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[15]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[16]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[17]

Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671

[18]

Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329

[19]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[20]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

[Back to Top]