2016, 9(3): 687-696. doi: 10.3934/dcdss.2016022

Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel

1. 

Chelyabinsk State University, Laboratory of Quantum Topology, 129 Kashirin Brothers Str., Chelyabinsk, 454001, Russian Federation

2. 

Chelyabinsk State University, 129 Kashirin Brothers Str., Chelyabinsk, 454001, Russian Federation

Received  February 2015 Revised  July 2015 Published  April 2016

An identification problem is considered for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Solutions of problems with Cauchy and Showalter conditions on initial values are proved to be existing and unique. Solutions stability estimates are derived. The abstract results are applied to an identification problem for the linearized Oskolkov system of equations. There are considered different degrees of system degeneration with respect to the time derivatives of unknown functions.
Citation: Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022
References:
[1]

N. L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type,, J. Inverse Ill-Posed Probl., 10 (2002), 547. doi: 10.1515/jiip.2002.10.6.547.

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim Theory Appl., 130 (2006), 41. doi: 10.1007/s10957-006-9083-y.

[3]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68. doi: 10.1016/j.na.2011.08.001.

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative,, Marcel Dekker, (2003). doi: 10.1201/9780203911433.

[5]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker, (1999).

[6]

V. E. Fedorov, Linear equations of the Sobolev type with relatively $p$-radial operators,, Dokl. Akad. Nauk, 351 (1996), 316.

[7]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators,, St. Petersburgh. Math. J., 12 (2001), 471.

[8]

V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces,, Siberian Math. J., 46 (2005), 333. doi: 10.1007/s11202-005-0035-9.

[9]

V. E. Fedorov, Svoistva psevdoresolvent i usloviya sushchestvovaniya vyrozhdennoi polugruppy operatorov,, (Russian) [Pseudoresolvent properties and a degenerate operator semigroup existence conditions], 11 (2009), 12.

[10]

N. D. Ivanova, Inverse problem for a linearized quasi-stationary phase field model with degeneracy,, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 6 (2013), 128.

[11]

N. D. Ivanova, V. E. Fedorov and K. M. Komarova, Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya,, (Russian) [Nonlinear inverse problem for the Oskolkov system, 13 (2012), 50.

[12]

A. I. Kozhanov, Lineinye obratnye zadachi dlya odnogo klassa vyrozhdayushchikhsya uravneniy sobolevskogo tipa (Russian) [Linear inverse problem for a class of degenerate Sobolev type equations],, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 5 (2012), 33.

[13]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, New York-London-Paris: Gordon and Breach, (1969).

[14]

A. P. Oskolkov, Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostei Kel'vina-Foigta i zhidkostei Oldroita,, (Russian) [Initial-boundary value problems for equations of Kelvin-Voight and Oldroyd fluids motion], 179 (1988), 126.

[15]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozhdennymi Raspredelennymi Sistemami, (Russian) [Optimal Control for Degenerate Distributed Systems],, Publishing Center of South Ural State University, (2013).

[16]

A. I. Prilepko, D. G. Orlovskiy and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker, (2000).

[17]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye i Nelineinye Uravneniya Sobolevskogo Tipa,, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], (2007).

[18]

A. V. Urazaeva and V. E. Fedorov, An inverse problem for linear Sobolev type equations,, J. Inverse Ill-Posed Probl., 12 (2004), 387. doi: 10.1515/1569394042248210.

[19]

A. V. Urazaeva and V. E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics,, Differ. Equ., 44 (2008), 1147. doi: 10.1134/S0012266108080120.

[20]

A. V. Urazaeva and V. E. Fedorov, On the well-posedness of the prediction-control problem for some systems of equations,, Math. Notes, 85 (2009), 426. doi: 10.1134/S0001434609030134.

[21]

A. V. Urazaeva and V. E. Fedorov, Lineinaya evolutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa, (Russian) [Linear evolutionary inverse problem for Sobolev type equations],, in Neklassicheskie uravnenia matematicheskoi fiziki (ed. A.I. Kozhanov), (2010), 293.

show all references

References:
[1]

N. L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type,, J. Inverse Ill-Posed Probl., 10 (2002), 547. doi: 10.1515/jiip.2002.10.6.547.

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim Theory Appl., 130 (2006), 41. doi: 10.1007/s10957-006-9083-y.

[3]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68. doi: 10.1016/j.na.2011.08.001.

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative,, Marcel Dekker, (2003). doi: 10.1201/9780203911433.

[5]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker, (1999).

[6]

V. E. Fedorov, Linear equations of the Sobolev type with relatively $p$-radial operators,, Dokl. Akad. Nauk, 351 (1996), 316.

[7]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators,, St. Petersburgh. Math. J., 12 (2001), 471.

[8]

V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces,, Siberian Math. J., 46 (2005), 333. doi: 10.1007/s11202-005-0035-9.

[9]

V. E. Fedorov, Svoistva psevdoresolvent i usloviya sushchestvovaniya vyrozhdennoi polugruppy operatorov,, (Russian) [Pseudoresolvent properties and a degenerate operator semigroup existence conditions], 11 (2009), 12.

[10]

N. D. Ivanova, Inverse problem for a linearized quasi-stationary phase field model with degeneracy,, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 6 (2013), 128.

[11]

N. D. Ivanova, V. E. Fedorov and K. M. Komarova, Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya,, (Russian) [Nonlinear inverse problem for the Oskolkov system, 13 (2012), 50.

[12]

A. I. Kozhanov, Lineinye obratnye zadachi dlya odnogo klassa vyrozhdayushchikhsya uravneniy sobolevskogo tipa (Russian) [Linear inverse problem for a class of degenerate Sobolev type equations],, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 5 (2012), 33.

[13]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, New York-London-Paris: Gordon and Breach, (1969).

[14]

A. P. Oskolkov, Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostei Kel'vina-Foigta i zhidkostei Oldroita,, (Russian) [Initial-boundary value problems for equations of Kelvin-Voight and Oldroyd fluids motion], 179 (1988), 126.

[15]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozhdennymi Raspredelennymi Sistemami, (Russian) [Optimal Control for Degenerate Distributed Systems],, Publishing Center of South Ural State University, (2013).

[16]

A. I. Prilepko, D. G. Orlovskiy and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker, (2000).

[17]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye i Nelineinye Uravneniya Sobolevskogo Tipa,, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], (2007).

[18]

A. V. Urazaeva and V. E. Fedorov, An inverse problem for linear Sobolev type equations,, J. Inverse Ill-Posed Probl., 12 (2004), 387. doi: 10.1515/1569394042248210.

[19]

A. V. Urazaeva and V. E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics,, Differ. Equ., 44 (2008), 1147. doi: 10.1134/S0012266108080120.

[20]

A. V. Urazaeva and V. E. Fedorov, On the well-posedness of the prediction-control problem for some systems of equations,, Math. Notes, 85 (2009), 426. doi: 10.1134/S0001434609030134.

[21]

A. V. Urazaeva and V. E. Fedorov, Lineinaya evolutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa, (Russian) [Linear evolutionary inverse problem for Sobolev type equations],, in Neklassicheskie uravnenia matematicheskoi fiziki (ed. A.I. Kozhanov), (2010), 293.

[1]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[2]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[3]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[4]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[5]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[6]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[7]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[8]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[9]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[10]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[11]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[12]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[13]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[14]

Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87

[15]

Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405

[16]

Mikko Orispää, Markku Lehtinen. Fortran linear inverse problem solver. Inverse Problems & Imaging, 2010, 4 (3) : 485-503. doi: 10.3934/ipi.2010.4.485

[17]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[20]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]