2016, 9(2): 393-408. doi: 10.3934/dcdss.2016003

Comparison between Borel-Padé summation and factorial series, as time integration methods

1. 

Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356, Université de La Rochelle, 17042 La Rochelle Cedex 1, France, France, France

Received  April 2015 Revised  November 2015 Published  March 2016

We compare the performance of two algorithms of computing the Borel sum of a time power series. The first one uses Padé approximants in Borel space, followed by a Laplace transform. The second is based on factorial series. These algorithms are incorporated in a numerical scheme for time integration of differential equations.
Citation: Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003
References:
[1]

V. Adukov and O. Ibryaeva, A new algorithm for computing padé approximants,, \arXiv{1112.5694}., ().

[2]

G. Baker, J. Gammel and J. Wills, An investigation of the applicability of the Padé approximant method,, Journal of Mathematical Analysis and Applications, 2 (1961), 405. doi: 10.1016/0022-247X(61)90019-1.

[3]

B. Beckermann and A. Ana Matos, Algebraic properties of robust Padé approximants,, Journal of Approximation Theory, 190 (2015), 91. doi: 10.1016/j.jat.2014.05.018.

[4]

J. Boyd, Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals,, Journal of Scientific Computing, 2 (1987), 99. doi: 10.1007/BF01061480.

[5]

C. Brezinski, Rationnal approximation to formal power serie,, Journal of Approximation Theory, 25 (1979), 295. doi: 10.1016/0021-9045(79)90019-4.

[6]

C. Brezinski and J. Van Iseghem, Padé approximations,, in Handbook of Numerical Analysis (eds. P. G. Ciarlet and J. L. Lions), 3 (1994), 47. doi: 10.1016/S1570-8659(05)80016-X.

[7]

A. Bultheel, Recursive algorithms for nonnormal Pade tables,, SIAM Journal on Applied Mathematics, 39 (1980), 106. doi: 10.1137/0139009.

[8]

O. Costin, G. Luo and S. Tanveer, Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation,, Philosophical Transactions of the Royal Society A: Mathematical, 366 (2008), 2775. doi: 10.1098/rsta.2008.0052.

[9]

P. J. Davis and P. Rabinowitz, Ignoring the singularity in approximate integration,, Journal of the Society for Industrial and Applied Mathematics: Series B, 2 (1965), 367. doi: 10.1137/0702029.

[10]

A. Deeb, A. Hamdouni, E. Liberge and D. Razafindralandy, Borel-Laplace summation method used as time integration scheme,, ESAIM: Procedings and Surveys, 45 (2014), 318. doi: 10.1051/proc/201445033.

[11]

E. Delabaere and J.-M. Rasoamanana, Sommation effective d'une somme de Borel par séries de factorielles,, Annales de l'institut Fourier, 57 (2007), 421. doi: 10.5802/aif.2263.

[12]

W. Gautschi, Gauss-type quadrature rules for rational functions,, Numerical Integration IV, 112 (1993), 111. doi: 10.1007/978-3-0348-6338-4_9.

[13]

W. Gautschi, The use of rational functions in numerical quadrature,, Journal of Computational and Applied Mathematics, 133 (2001), 111. doi: 10.1016/S0377-0427(00)00637-3.

[14]

W. Gautschi, Quadrature formulae on half-infinite intervals,, BIT Numerical Mathematics, 31 (1991), 438. doi: 10.1007/BF01933261.

[15]

J. Gilewicz, Approximants de Padé, vol. 667 of Lecture Notes in Mathematics,, Springer-Verlag, (1978).

[16]

J. Gilewicz and Y. Kryakin, Froissart doublets in Padé approximation in the case of polynomial noise,, Journal of Computational and Applied Mathematics, 153 (2003), 235. doi: 10.1016/S0377-0427(02)00674-X.

[17]

J. Gilewicz and M. Pindor, Padé approximants and noise: A case of geometric series,, Journal of Computational and Applied Mathematics, 87 (1997), 199. doi: 10.1016/S0377-0427(97)00185-4.

[18]

P. Gonnet, S. Güttel and L. Trefethen, Robust Padé approximation via SVD,, SIAM Review, 55 (2013), 101. doi: 10.1137/110853236.

[19]

N. Hall, Interview of sir michael berry by nina hall: Caustics, catastrophes and quantum chaos,, Nexus News, (): 4.

[20]

M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos,, Elsevier, (2013). doi: 10.1016/B978-0-12-382010-5.00001-4.

[21]

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\Phi^4$-Theories,, World Scientific Publishing Co., (2001). doi: 10.1142/9789812799944.

[22]

V. Kowalenko, The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation,, Bentham, (2009). doi: 10.2174/97816080501091090101.

[23]

R. Kumar and M. K. Jain, Quadrature formulas for semi-infinite integrals,, Mathematics of Computation, 28 (1974), 499. doi: 10.1090/S0025-5718-1974-0343549-5.

[24]

D. Lubinsky, Reflections on the Baker-Gammel-Wills (Padé),, in Analytic Number Theory, (2014), 561.

[25]

D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands,, Mathematics of Computation, 43 (1984), 219. doi: 10.1090/S0025-5718-1984-0744932-2.

[26]

D. Lutz, M. Miyake and R. Schäfke, On the Borel summability of divergent solutions of the heat equation,, Nagoya Mathematical Journal, 154 (1999), 1.

[27]

G. Lysik, Borel summable solutions of the Burgers equation,, Annales Polonici Mathematici, 95 (2009), 187. doi: 10.4064/ap95-2-9.

[28]

G. Lysik and S. Michalik, Formal solutions of semilinear heat equations,, Journal of Mathematical Analysis and Applications, 341 (2008), 372. doi: 10.1016/j.jmaa.2007.10.005.

[29]

W. Mascarenhas, Robust Padé approximants can diverge,, , ().

[30]

N. Nielsen, Recherches sur les séries de factorielles,, Annales Scientifiques de l'E.N.S. 3è série, 19 (1902), 409.

[31]

N. Nielsen, Les séries de factorielles et les opérations fondamentales,, Mathematische Annalen, 59 (1904), 355. doi: 10.1007/BF01445147.

[32]

N. Nielsen, Sur les séries de factorielles et la fonction gamma (extrait d'une lettre adressée à M.-N. de Sonin à Saint-Pétersbourg),, Annales Scientifiques de l'E.N.S. 3è série, 23 (1906), 145.

[33]

N. Nörlund, Vorlesungen Über Differenzenrechnung,, Srpinger Verlag, (1924).

[34]

N. Nörlund, Leçons Sur Les Séries D'interpolation,, Gauthier-Villard et Cie, (1926).

[35]

S. Pincherle, Sulle serie di fattoriali. nota II,, Atti della Reale Accademia dei Lincei, 11 (1902), 417.

[36]

J.-P. Ramis, Séries divergentes et théories asymptotiques,, in Journées X-UPS 1991, (1991), 7.

[37]

J.-P. Ramis, Les développements asymptotiques après poincaré: Continuité et... divergences,, Gazettes des Mathématiciens., ().

[38]

D. Razafindralandy and A. Hamdouni, Time integration algorithm based on divergent series resummation, for ordinary and partial differential equations,, Journal of Computational Physics, 236 (2013), 56. doi: 10.1016/j.jcp.2012.10.022.

[39]

H. Stahl, Conjectures around the Baker-Gammel-Wills conjecture,, Constructive Approximation, 13 (1997), 287. doi: 10.1007/s003659900044.

[40]

H. Stahl, Spurious poles in Padé approximation,, Journal of Computational and Applied Mathematics, 99 (1998), 511. doi: 10.1016/S0377-0427(98)00180-0.

[41]

J. Thomann, Resommation des séries formelles. Solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières,, Numerische Mathematik, 58 (1990), 503. doi: 10.1007/BF01385638.

[42]

J. Thomann, Procédés formels et numériques de sommation de séries solutions d'équations différentielles,, in Journées X-UPS 1991, (1991), 101.

[43]

J. Thomann, Formal and Numerical Summation of Formal Power Series Solutions of ODE's,, Technical report, (2000).

[44]

F. Thomlinson, Generalized factorial series,, Transactions of the American Mathematical Society, 31 ().

[45]

M. Thomson, The Calculus Of Finite Differences,, Macmillan and Company, (1933).

[46]

J. van Deun, A. Bultheel and P. González Vera, On computing rational Gauss-Chebyshev quadrature formulas,, Mathematics of Computation, 75 (2006), 307. doi: 10.1090/S0025-5718-05-01774-6.

[47]

G. N. Watson, The transformation of an asymptotic series into a convergent series of inverse factorials,, Rendiconti del Circolo Matematico di Palermo, 34 (1912), 41.

[48]

E. Weniger, Summation of divergent power series by means of factorial series,, Applied Numerical Mathematics, 60 (2010), 1429. doi: 10.1016/j.apnum.2010.04.003.

show all references

References:
[1]

V. Adukov and O. Ibryaeva, A new algorithm for computing padé approximants,, \arXiv{1112.5694}., ().

[2]

G. Baker, J. Gammel and J. Wills, An investigation of the applicability of the Padé approximant method,, Journal of Mathematical Analysis and Applications, 2 (1961), 405. doi: 10.1016/0022-247X(61)90019-1.

[3]

B. Beckermann and A. Ana Matos, Algebraic properties of robust Padé approximants,, Journal of Approximation Theory, 190 (2015), 91. doi: 10.1016/j.jat.2014.05.018.

[4]

J. Boyd, Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals,, Journal of Scientific Computing, 2 (1987), 99. doi: 10.1007/BF01061480.

[5]

C. Brezinski, Rationnal approximation to formal power serie,, Journal of Approximation Theory, 25 (1979), 295. doi: 10.1016/0021-9045(79)90019-4.

[6]

C. Brezinski and J. Van Iseghem, Padé approximations,, in Handbook of Numerical Analysis (eds. P. G. Ciarlet and J. L. Lions), 3 (1994), 47. doi: 10.1016/S1570-8659(05)80016-X.

[7]

A. Bultheel, Recursive algorithms for nonnormal Pade tables,, SIAM Journal on Applied Mathematics, 39 (1980), 106. doi: 10.1137/0139009.

[8]

O. Costin, G. Luo and S. Tanveer, Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation,, Philosophical Transactions of the Royal Society A: Mathematical, 366 (2008), 2775. doi: 10.1098/rsta.2008.0052.

[9]

P. J. Davis and P. Rabinowitz, Ignoring the singularity in approximate integration,, Journal of the Society for Industrial and Applied Mathematics: Series B, 2 (1965), 367. doi: 10.1137/0702029.

[10]

A. Deeb, A. Hamdouni, E. Liberge and D. Razafindralandy, Borel-Laplace summation method used as time integration scheme,, ESAIM: Procedings and Surveys, 45 (2014), 318. doi: 10.1051/proc/201445033.

[11]

E. Delabaere and J.-M. Rasoamanana, Sommation effective d'une somme de Borel par séries de factorielles,, Annales de l'institut Fourier, 57 (2007), 421. doi: 10.5802/aif.2263.

[12]

W. Gautschi, Gauss-type quadrature rules for rational functions,, Numerical Integration IV, 112 (1993), 111. doi: 10.1007/978-3-0348-6338-4_9.

[13]

W. Gautschi, The use of rational functions in numerical quadrature,, Journal of Computational and Applied Mathematics, 133 (2001), 111. doi: 10.1016/S0377-0427(00)00637-3.

[14]

W. Gautschi, Quadrature formulae on half-infinite intervals,, BIT Numerical Mathematics, 31 (1991), 438. doi: 10.1007/BF01933261.

[15]

J. Gilewicz, Approximants de Padé, vol. 667 of Lecture Notes in Mathematics,, Springer-Verlag, (1978).

[16]

J. Gilewicz and Y. Kryakin, Froissart doublets in Padé approximation in the case of polynomial noise,, Journal of Computational and Applied Mathematics, 153 (2003), 235. doi: 10.1016/S0377-0427(02)00674-X.

[17]

J. Gilewicz and M. Pindor, Padé approximants and noise: A case of geometric series,, Journal of Computational and Applied Mathematics, 87 (1997), 199. doi: 10.1016/S0377-0427(97)00185-4.

[18]

P. Gonnet, S. Güttel and L. Trefethen, Robust Padé approximation via SVD,, SIAM Review, 55 (2013), 101. doi: 10.1137/110853236.

[19]

N. Hall, Interview of sir michael berry by nina hall: Caustics, catastrophes and quantum chaos,, Nexus News, (): 4.

[20]

M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos,, Elsevier, (2013). doi: 10.1016/B978-0-12-382010-5.00001-4.

[21]

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\Phi^4$-Theories,, World Scientific Publishing Co., (2001). doi: 10.1142/9789812799944.

[22]

V. Kowalenko, The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation,, Bentham, (2009). doi: 10.2174/97816080501091090101.

[23]

R. Kumar and M. K. Jain, Quadrature formulas for semi-infinite integrals,, Mathematics of Computation, 28 (1974), 499. doi: 10.1090/S0025-5718-1974-0343549-5.

[24]

D. Lubinsky, Reflections on the Baker-Gammel-Wills (Padé),, in Analytic Number Theory, (2014), 561.

[25]

D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands,, Mathematics of Computation, 43 (1984), 219. doi: 10.1090/S0025-5718-1984-0744932-2.

[26]

D. Lutz, M. Miyake and R. Schäfke, On the Borel summability of divergent solutions of the heat equation,, Nagoya Mathematical Journal, 154 (1999), 1.

[27]

G. Lysik, Borel summable solutions of the Burgers equation,, Annales Polonici Mathematici, 95 (2009), 187. doi: 10.4064/ap95-2-9.

[28]

G. Lysik and S. Michalik, Formal solutions of semilinear heat equations,, Journal of Mathematical Analysis and Applications, 341 (2008), 372. doi: 10.1016/j.jmaa.2007.10.005.

[29]

W. Mascarenhas, Robust Padé approximants can diverge,, , ().

[30]

N. Nielsen, Recherches sur les séries de factorielles,, Annales Scientifiques de l'E.N.S. 3è série, 19 (1902), 409.

[31]

N. Nielsen, Les séries de factorielles et les opérations fondamentales,, Mathematische Annalen, 59 (1904), 355. doi: 10.1007/BF01445147.

[32]

N. Nielsen, Sur les séries de factorielles et la fonction gamma (extrait d'une lettre adressée à M.-N. de Sonin à Saint-Pétersbourg),, Annales Scientifiques de l'E.N.S. 3è série, 23 (1906), 145.

[33]

N. Nörlund, Vorlesungen Über Differenzenrechnung,, Srpinger Verlag, (1924).

[34]

N. Nörlund, Leçons Sur Les Séries D'interpolation,, Gauthier-Villard et Cie, (1926).

[35]

S. Pincherle, Sulle serie di fattoriali. nota II,, Atti della Reale Accademia dei Lincei, 11 (1902), 417.

[36]

J.-P. Ramis, Séries divergentes et théories asymptotiques,, in Journées X-UPS 1991, (1991), 7.

[37]

J.-P. Ramis, Les développements asymptotiques après poincaré: Continuité et... divergences,, Gazettes des Mathématiciens., ().

[38]

D. Razafindralandy and A. Hamdouni, Time integration algorithm based on divergent series resummation, for ordinary and partial differential equations,, Journal of Computational Physics, 236 (2013), 56. doi: 10.1016/j.jcp.2012.10.022.

[39]

H. Stahl, Conjectures around the Baker-Gammel-Wills conjecture,, Constructive Approximation, 13 (1997), 287. doi: 10.1007/s003659900044.

[40]

H. Stahl, Spurious poles in Padé approximation,, Journal of Computational and Applied Mathematics, 99 (1998), 511. doi: 10.1016/S0377-0427(98)00180-0.

[41]

J. Thomann, Resommation des séries formelles. Solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières,, Numerische Mathematik, 58 (1990), 503. doi: 10.1007/BF01385638.

[42]

J. Thomann, Procédés formels et numériques de sommation de séries solutions d'équations différentielles,, in Journées X-UPS 1991, (1991), 101.

[43]

J. Thomann, Formal and Numerical Summation of Formal Power Series Solutions of ODE's,, Technical report, (2000).

[44]

F. Thomlinson, Generalized factorial series,, Transactions of the American Mathematical Society, 31 ().

[45]

M. Thomson, The Calculus Of Finite Differences,, Macmillan and Company, (1933).

[46]

J. van Deun, A. Bultheel and P. González Vera, On computing rational Gauss-Chebyshev quadrature formulas,, Mathematics of Computation, 75 (2006), 307. doi: 10.1090/S0025-5718-05-01774-6.

[47]

G. N. Watson, The transformation of an asymptotic series into a convergent series of inverse factorials,, Rendiconti del Circolo Matematico di Palermo, 34 (1912), 41.

[48]

E. Weniger, Summation of divergent power series by means of factorial series,, Applied Numerical Mathematics, 60 (2010), 1429. doi: 10.1016/j.apnum.2010.04.003.

[1]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[2]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[3]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[4]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-927. doi: 10.3934/dcdss.2019061

[5]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[6]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[7]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[8]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[9]

Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120

[10]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

[11]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[12]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[13]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[14]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[15]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[16]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[17]

Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020

[18]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[19]

Richard D. Neidinger. Efficient recurrence relations for univariate and multivariate Taylor series coefficients. Conference Publications, 2013, 2013 (special) : 587-596. doi: 10.3934/proc.2013.2013.587

[20]

V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]