
Previous Article
Preface
 DCDSS Home
 This Issue

Next Article
Parametric nonlinear PDEs with multiple solutions: A PGD approach
Can the 'stickslip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?
1.  CNRS and UMPC Université Paris 06, Institut Jean le Rond d'Alembert, UMR 7190, 75005 Paris, France 
References:
[1] 
P. Ballard and J. Jarušek, Indentation of an elastic halfspace by a rigid flat punch as a model problem for analyzing contact problems with coulomb friction,, Journal of Elasticity, 103 (2011), 15. doi: 10.1007/s1065901092709. 
[2] 
P. Ballard, Steady sliding frictional contact problems in linear elasticity,, Journal of Elasticity, 110 (2013), 33. doi: 10.1007/s1065901293816. 
[3] 
P. Ballard, Steady sliding frictional contact problem for an elastic halfspace with a discontinuous friction coefficient and related stress singularities,, to appear in the special issue of Journal of the Mechanics and Physics of Solids in honour of Pierre Suquet, (2015). 
[4] 
R. W. Cottle, J.S. Pang and R. E. Stone, The Linear Complementarity Problem,, Society for Industrial and Applied Mathematics, (2009). doi: 10.1137/1.9780898719000.ch1. 
[5] 
P. Hild, Nonunique slipping in the Coulomb friction model in twodimensional linear elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 57 (2004), 225. doi: 10.1093/qjmam/57.2.225. 
[6] 
J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Volume 1,, Dunod, (1968). 
[7] 
J. L. Lions and G. Stampacchia, Variational Inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493. doi: 10.1002/cpa.3160200302. 
[8] 
J. R. Rice and A. L. Ruina, Stability of steady frictional slipping,, Journal of Applied Mechanics, 50 (1983), 343. doi: 10.1115/1.3167042. 
[9] 
F. G. Tricomi, Integral Equations,, Interscience Publishers, (1957). 
show all references
References:
[1] 
P. Ballard and J. Jarušek, Indentation of an elastic halfspace by a rigid flat punch as a model problem for analyzing contact problems with coulomb friction,, Journal of Elasticity, 103 (2011), 15. doi: 10.1007/s1065901092709. 
[2] 
P. Ballard, Steady sliding frictional contact problems in linear elasticity,, Journal of Elasticity, 110 (2013), 33. doi: 10.1007/s1065901293816. 
[3] 
P. Ballard, Steady sliding frictional contact problem for an elastic halfspace with a discontinuous friction coefficient and related stress singularities,, to appear in the special issue of Journal of the Mechanics and Physics of Solids in honour of Pierre Suquet, (2015). 
[4] 
R. W. Cottle, J.S. Pang and R. E. Stone, The Linear Complementarity Problem,, Society for Industrial and Applied Mathematics, (2009). doi: 10.1137/1.9780898719000.ch1. 
[5] 
P. Hild, Nonunique slipping in the Coulomb friction model in twodimensional linear elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 57 (2004), 225. doi: 10.1093/qjmam/57.2.225. 
[6] 
J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Volume 1,, Dunod, (1968). 
[7] 
J. L. Lions and G. Stampacchia, Variational Inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493. doi: 10.1002/cpa.3160200302. 
[8] 
J. R. Rice and A. L. Ruina, Stability of steady frictional slipping,, Journal of Applied Mechanics, 50 (1983), 343. doi: 10.1115/1.3167042. 
[9] 
F. G. Tricomi, Integral Equations,, Interscience Publishers, (1957). 
[1] 
Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 117126. doi: 10.3934/dcdss.2008.1.117 
[2] 
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437446. doi: 10.3934/proc.2011.2011.437 
[3] 
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155165. doi: 10.3934/jimo.2008.4.155 
[4] 
Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 755781. doi: 10.3934/dcdsb.2018206 
[5] 
Masao Fukushima. A class of gap functions for quasivariational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165171. doi: 10.3934/jimo.2007.3.165 
[6] 
Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621630. doi: 10.3934/jimo.2013.9.621 
[7] 
Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183198. doi: 10.3934/jimo.2011.7.183 
[8] 
T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675689. doi: 10.3934/nhm.2008.3.675 
[9] 
Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems  A, 2009, 25 (2) : 545565. doi: 10.3934/dcds.2009.25.545 
[10] 
Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673684. doi: 10.3934/jimo.2008.4.673 
[11] 
HuiQiang Ma, NanJing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645660. doi: 10.3934/jimo.2015.11.645 
[12] 
RenYou Zhong, NanJing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261274. doi: 10.3934/naco.2011.1.261 
[13] 
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a nonlocal parabolic variational inequality. Discrete & Continuous Dynamical Systems  B, 2001, 1 (1) : 7188. doi: 10.3934/dcdsb.2001.1.71 
[14] 
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 331348. doi: 10.3934/dcdsb.2013.18.331 
[15] 
G. M. de Araújo, S. B. de Menezes. On a variational inequality for the NavierStokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583596. doi: 10.3934/cpaa.2006.5.583 
[16] 
Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2018, 14 (3) : 10851104. doi: 10.3934/jimo.2017091 
[17] 
Shuang Chen, LiPing Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733746. doi: 10.3934/jimo.2015.11.733 
[18] 
Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 13811396. doi: 10.3934/jimo.2018012 
[19] 
Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319342. doi: 10.3934/jimo.2018045 
[20] 
Rong Hu, YaPing Fang, NanJing Huang. LevitinPolyak wellposedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465481. doi: 10.3934/jimo.2010.6.465 
2017 Impact Factor: 0.561
Tools
Metrics
Other articles
by authors
[Back to Top]