# American Institute of Mathematical Sciences

February  2016, 9(1): 43-52. doi: 10.3934/dcdss.2016.9.43

## Elliptic boundary value problems in spaces of continuous functions

 1 Dipartimento di Matematica Applicata, Università di Pisa, Via Buonarroti 1/C, 56127 Pisa

Received  September 2014 Revised  February 2015 Published  December 2015

In these notes we consider second order linear elliptic boundary value problems in the framework of different spaces on continuous functions. We appeal to a general formulation which contains some interesting particular cases as, for instance, a new class of functional spaces, called here Hölog spaces and denoted by the symbol $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,,$ $\,0 \leq\,\lambda<\,1\,,$ and $\,\alpha \in\,\mathbb{R}\,.$ One has the following inclusions $$C^{0,\,\lambda+\,\epsilon}(\overline{\Omega})\subset \,C^{0,\,\lambda}_\alpha(\overline{\Omega})\subset \,C^{0,\,\lambda}(\overline{\Omega}) \subset \,C^{0,\,\lambda,}_{-\alpha}(\overline{\Omega}) \subset\,C^{0,\,\lambda-\,\epsilon}(\overline{\Omega})\,,$$ for $\,\alpha>\,0\,$ ($\epsilon >\,0\,$ arbitrarily small). Roughly speaking, for each fixed $\,\lambda\,,$ the family $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ is a refinement of the single Hölder classical space $\, C^{0,\,\lambda}(\overline{\Omega})=\,C^{0,\,\lambda}_0(\overline{\Omega})\,.$ On the other hand, for $\,\lambda=\,0\,$ and $\,\alpha>\,0\,,$ $\,C^{0,\,0}_\alpha(\overline{\Omega})=\,\, D^{0,\,\alpha}(\overline{\Omega})\,$ is a Log space. The more interesting feature is that, as for classical Hölder (and Sobolev) spaces, full regularity occurs. namely, for each $\,\lambda>\,0\,$ and arbitrary real $\,\alpha\,,$ $\,\nabla^2\,u$ and $\,f\,$ enjoy the same $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ regularity. All the above setup is presented as part of a more general picture.
Citation: Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43
##### References:
 [1] H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid,, J. Diff. Eq., 54 (1984), 373. doi: 10.1016/0022-0396(84)90149-9. Google Scholar [2] H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem,, J. Math. Fluid Mech., 16 (2014), 539. doi: 10.1007/s00021-014-0170-9. Google Scholar [3] H. Beirão da Veiga, An overview on classical solutions to $2-D$ Euler equations and to elliptic boundary value problems,, in Recent Progress in the Theory of the Euler and Navier-Stokes Equations (eds. J. C. Robinson, (). Google Scholar [4] H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the $2-D$ Euler equations,, Portugaliae Math., 72 (2015), 285. doi: 10.4171/PM/1969. Google Scholar [5] H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundary value problems,, , (2015). Google Scholar [6] L. Bers, F. John and M. Schechter, Partial Differential Equations,, John Wiley and Sons, (1964). Google Scholar [7] C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations,, J. Diff. Eq., 30 (1978), 308. doi: 10.1016/0022-0396(78)90003-7. Google Scholar [8] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis,, Springer, (2013). doi: 10.1007/978-3-0348-0548-3. Google Scholar [9] O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969). Google Scholar [10] V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier-Stokes equations,, Trans. Amer. Math. Soc., 216 (1976), 61. doi: 10.1090/S0002-9947-1976-0390550-X. Google Scholar [11] I. I. Sharapudinov, The basis property of the Haar system in the space $L^{p(t)}[0,1]$, and the principle of localization in the mean,, Mat. Sb. (N.S.), 130 (1986), 275. Google Scholar [12] V. A. Solonnikov, On estimates of Green's tensors for certain boundary value problems,, Doklady Akad. Nauk., 130 (1960), 128. Google Scholar

show all references

##### References:
 [1] H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid,, J. Diff. Eq., 54 (1984), 373. doi: 10.1016/0022-0396(84)90149-9. Google Scholar [2] H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem,, J. Math. Fluid Mech., 16 (2014), 539. doi: 10.1007/s00021-014-0170-9. Google Scholar [3] H. Beirão da Veiga, An overview on classical solutions to $2-D$ Euler equations and to elliptic boundary value problems,, in Recent Progress in the Theory of the Euler and Navier-Stokes Equations (eds. J. C. Robinson, (). Google Scholar [4] H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the $2-D$ Euler equations,, Portugaliae Math., 72 (2015), 285. doi: 10.4171/PM/1969. Google Scholar [5] H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundary value problems,, , (2015). Google Scholar [6] L. Bers, F. John and M. Schechter, Partial Differential Equations,, John Wiley and Sons, (1964). Google Scholar [7] C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations,, J. Diff. Eq., 30 (1978), 308. doi: 10.1016/0022-0396(78)90003-7. Google Scholar [8] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis,, Springer, (2013). doi: 10.1007/978-3-0348-0548-3. Google Scholar [9] O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969). Google Scholar [10] V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier-Stokes equations,, Trans. Amer. Math. Soc., 216 (1976), 61. doi: 10.1090/S0002-9947-1976-0390550-X. Google Scholar [11] I. I. Sharapudinov, The basis property of the Haar system in the space $L^{p(t)}[0,1]$, and the principle of localization in the mean,, Mat. Sb. (N.S.), 130 (1986), 275. Google Scholar [12] V. A. Solonnikov, On estimates of Green's tensors for certain boundary value problems,, Doklady Akad. Nauk., 130 (1960), 128. Google Scholar
 [1] John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84 [2] Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 [3] Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 [4] Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127 [5] Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026 [6] G. R. Cirmi, S. Leonardi. Higher differentiability for solutions of linear elliptic systems with measure data. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 89-104. doi: 10.3934/dcds.2010.26.89 [7] John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276 [8] Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615 [9] Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347 [10] Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 [11] Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 [12] Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061 [13] Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293 [14] G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 [15] Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 [16] Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155 [17] Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581 [18] Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261 [19] Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051 [20] Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

2018 Impact Factor: 0.545