February  2016, 9(1): 269-287. doi: 10.3934/dcdss.2016.9.269

Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem

1. 

Departamento de Matemáticas, Universidad de Oviedo, Facultad de Ciencias, Calvo Sotelo s/n, 33007 Oviedo, Spain

2. 

Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile

Received  September 2014 Revised  February 2015 Published  December 2015

We aim to provide a finite element analysis for the elastoacoustic vibration problem. We use a dual-mixed variational formulation for the elasticity system and combine the lowest order Lagrange finite element in the fluid domain with the reduced symmetry element known as PEERS and introduced for linear elasticity in [1]. We show that the resulting global nonconforming scheme provides a correct spectral approximation and we prove quasi-optimal error estimates. Finally, we confirm the asymptotic rates of convergence by numerical experiments.
Citation: Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269
References:
[1]

D. N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity,, Japan J. Appl. Math., 1 (1984), 347. doi: 10.1007/BF03167064. Google Scholar

[2]

D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry,, Math. Comp., 76 (2007), 1699. doi: 10.1090/S0025-5718-07-01998-9. Google Scholar

[3]

A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes,, SIAM J. Numer. Anal., 32 (1995), 1280. doi: 10.1137/0732059. Google Scholar

[4]

A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems,, Internat. J. Numer. Methods Engrg., 40 (1997), 1435. doi: 10.1002/(SICI)1097-0207(19970430)40:8<1435::AID-NME119>3.0.CO;2-P. Google Scholar

[5]

A. Bermúdez, P. Gamallo, L. Hervella-Nieto, R. Rodríguez and D. Santamarina, Fluid-structure Acoustic Interaction,, Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods (eds. S. Marburg and B. Nolte), (2008). Google Scholar

[6]

A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity,, RAIRO - Math. Model. Numer. Anal. ($M^2AN$), 33 (1999), 305. doi: 10.1051/m2an:1999117. Google Scholar

[7]

D. Boffi, Finite element approximation of eigenvalue problems,, Acta Numerica, 19 (2010), 1. doi: 10.1017/S0962492910000012. Google Scholar

[8]

D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity,, Comm. Pure Appl. Anal., 8 (2009), 95. doi: 10.3934/cpaa.2009.8.95. Google Scholar

[9]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer Verlag, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[10]

M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions,, Lecture Notes in Mathematics, (1341). Google Scholar

[11]

J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence,, RAIRO Anal. Numér., 12 (1978), 97. Google Scholar

[12]

G. N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D,, SIAM J. Numer. Anal., 50 (2012), 1648. doi: 10.1137/110836705. Google Scholar

[13]

P. Grisvard, Problèmes aux limites dans les polygones. Mode d'emploi,, EDF, 1 (1986), 21. Google Scholar

[14]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numerica, 11 (2002), 237. doi: 10.1017/S0962492902000041. Google Scholar

[15]

L. Kiefling and G. C. Feng, Fluid-structure finite element vibration analysis,, AIAA J., 14 (1976), 199. doi: 10.2514/3.61357. Google Scholar

[16]

S. Meddahi, D. Mora and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations,, SIAM J. Numer. Anal., 51 (2013), 1041. doi: 10.1137/120863010. Google Scholar

[17]

S. Meddahi, D. Mora and R. Rodríguez, Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem,, Comput. Math. Appl., 68 (2014), 1733. doi: 10.1016/j.camwa.2014.10.016. Google Scholar

[18]

H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction,, J. Wiley & Sons, (1995). Google Scholar

show all references

References:
[1]

D. N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity,, Japan J. Appl. Math., 1 (1984), 347. doi: 10.1007/BF03167064. Google Scholar

[2]

D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry,, Math. Comp., 76 (2007), 1699. doi: 10.1090/S0025-5718-07-01998-9. Google Scholar

[3]

A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes,, SIAM J. Numer. Anal., 32 (1995), 1280. doi: 10.1137/0732059. Google Scholar

[4]

A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems,, Internat. J. Numer. Methods Engrg., 40 (1997), 1435. doi: 10.1002/(SICI)1097-0207(19970430)40:8<1435::AID-NME119>3.0.CO;2-P. Google Scholar

[5]

A. Bermúdez, P. Gamallo, L. Hervella-Nieto, R. Rodríguez and D. Santamarina, Fluid-structure Acoustic Interaction,, Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods (eds. S. Marburg and B. Nolte), (2008). Google Scholar

[6]

A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity,, RAIRO - Math. Model. Numer. Anal. ($M^2AN$), 33 (1999), 305. doi: 10.1051/m2an:1999117. Google Scholar

[7]

D. Boffi, Finite element approximation of eigenvalue problems,, Acta Numerica, 19 (2010), 1. doi: 10.1017/S0962492910000012. Google Scholar

[8]

D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity,, Comm. Pure Appl. Anal., 8 (2009), 95. doi: 10.3934/cpaa.2009.8.95. Google Scholar

[9]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer Verlag, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[10]

M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions,, Lecture Notes in Mathematics, (1341). Google Scholar

[11]

J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence,, RAIRO Anal. Numér., 12 (1978), 97. Google Scholar

[12]

G. N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D,, SIAM J. Numer. Anal., 50 (2012), 1648. doi: 10.1137/110836705. Google Scholar

[13]

P. Grisvard, Problèmes aux limites dans les polygones. Mode d'emploi,, EDF, 1 (1986), 21. Google Scholar

[14]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numerica, 11 (2002), 237. doi: 10.1017/S0962492902000041. Google Scholar

[15]

L. Kiefling and G. C. Feng, Fluid-structure finite element vibration analysis,, AIAA J., 14 (1976), 199. doi: 10.2514/3.61357. Google Scholar

[16]

S. Meddahi, D. Mora and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations,, SIAM J. Numer. Anal., 51 (2013), 1041. doi: 10.1137/120863010. Google Scholar

[17]

S. Meddahi, D. Mora and R. Rodríguez, Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem,, Comput. Math. Appl., 68 (2014), 1733. doi: 10.1016/j.camwa.2014.10.016. Google Scholar

[18]

H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction,, J. Wiley & Sons, (1995). Google Scholar

[1]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[2]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[3]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[4]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[5]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[6]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[7]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[8]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[9]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[10]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[11]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[12]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[13]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[14]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[15]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[16]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[17]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[18]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[19]

Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181

[20]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]