February  2016, 9(1): 255-267. doi: 10.3934/dcdss.2016.9.255

A note on the Navier-Stokes IBVP with small data in $L^n$

1. 

Dipartimento di Matematica, Università degli Studi di Napoli, via Vivaldi, 43, I-81100 Caserta

Received  September 2014 Revised  February 2015 Published  December 2015

We study existence and uniqueness of regular solutions to the Navier-Stokes initial boundary value problem in bounded or exterior domains $\Omega$ ($\partial\Omega$ sufficiently smooth) under the assumption $v_\circ$ in $L^n(\Omega)$, sufficiently small, and we prove global in time existence. The results are known in literature (see Remark 3), however the proof proposed here seems shorter, and we give a result concerning the behavior in time of the $L^q$-norm ($q\in[n,\infty]$) of the solutions and of the $L^n$-norm of the time derivative, with a sort of continuous dependence on the data, which, as far as we know, are new, and are close to the ones of the solution to the Stokes problem. Moreover, the constant for the $L^q$-estimate is independent of $q$.
Citation: Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255
References:
[1]

H. Beirăo da Veiga and P. Secchi, $L^p$-stability for the strong solutions of the Navier-Stokes equations in the whole space,, Arch. for Rational Mech. and Anal., 98 (1987), 65. doi: 10.1007/BF00279962. Google Scholar

[2]

F. Crispo and P. Maremonti, An interpolation inequality in exterior domains,, Rend. Sem. Mat. Univ. Padova, 112 (2004), 11. Google Scholar

[3]

Y. Enomoto and Y. Shibata, On a stability theorem of the Navier-Stokes equation in an exterior domain,, in Hyperbolic Problems, (2006), 383. Google Scholar

[4]

R. Farwig, H. Kozono and H. Sohr, An Lq-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21. doi: 10.1007/BF02588049. Google Scholar

[5]

C. Foias, Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$,, Bull. Soc. Math. France, 89 (1961), 1. Google Scholar

[6]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[7]

G. P. Galdi, J. Heywood and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest,, Arch. Rational Mech. Anal., 138 (1997), 307. doi: 10.1007/s002050050043. Google Scholar

[8]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[9]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Rational Mech. Anal., 89 (1985), 267. Google Scholar

[10]

T. Kato, Strong $L^p$-solution of the Navier-Stokes equation in $\mathbbR^n$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[11]

H. Kozono and T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two dimensional unbounded domains,, Arch. Rational Mech. Anal., 122 (1993), 1. doi: 10.1007/BF01816552. Google Scholar

[12]

H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains,, Arch. Rational Mech. Anal., 128 (1994), 1. doi: 10.1007/BF00380792. Google Scholar

[13]

P. Maremonti, Stabilità asintotica in media per moti fluidi viscosi in domini esterni,, Annali di Matematica Pura ed Applicata, 142 (1985), 57. Google Scholar

[14]

P. Maremonti, On the asymptotic behavior of the $L^2$-norm of suitable weak solutions to the Navier-Stokes equations in three-dimensional exterior domains,, Comm. Math. Phys., 118 (1988), 385. doi: 10.1007/BF01466723. Google Scholar

[15]

P. Maremonti, Some results on the asymptotic behavior of Hopf weak solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 210 (1992), 1. doi: 10.1007/BF02571780. Google Scholar

[16]

P. Maremonti, A remark on the Stokes problem with initial data in $L^1$,, J. Math. Fluid Mech., 13 (2011), 469. doi: 10.1007/s00021-010-0036-8. Google Scholar

[17]

P. Maremonti, A remark on the Stokes problem in Lorentz spaces,, Discrete and Continuous Dynamical Systems, 6 (2013), 1323. doi: 10.3934/dcdss.2013.6.1323. Google Scholar

[18]

P. Maremonti, On the Stokes problem in exterior domains: The maximum modulus theorem,, Discrete and Continuous Dynamical Systems, 34 (2014), 2135. doi: 10.3934/dcds.2014.34.2135. Google Scholar

[19]

P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes system in exterior domains,, Zap. Nauch. Sem. LOMI, 180 (1990), 105. doi: 10.1007/BF01249337. Google Scholar

[20]

P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains,, Ann. Sc. Norm. Sup. Pisa, 24 (1997), 395. Google Scholar

[21]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, J. Soviet Math., 8 (1977), 467. doi: 10.1007/BF01084616. Google Scholar

[22]

M. Yamazaki, The Navier-Stokes equations in the weak-Ln external force,, Math. Ann., 317 (2000), 635. doi: 10.1007/PL00004418. Google Scholar

show all references

References:
[1]

H. Beirăo da Veiga and P. Secchi, $L^p$-stability for the strong solutions of the Navier-Stokes equations in the whole space,, Arch. for Rational Mech. and Anal., 98 (1987), 65. doi: 10.1007/BF00279962. Google Scholar

[2]

F. Crispo and P. Maremonti, An interpolation inequality in exterior domains,, Rend. Sem. Mat. Univ. Padova, 112 (2004), 11. Google Scholar

[3]

Y. Enomoto and Y. Shibata, On a stability theorem of the Navier-Stokes equation in an exterior domain,, in Hyperbolic Problems, (2006), 383. Google Scholar

[4]

R. Farwig, H. Kozono and H. Sohr, An Lq-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21. doi: 10.1007/BF02588049. Google Scholar

[5]

C. Foias, Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$,, Bull. Soc. Math. France, 89 (1961), 1. Google Scholar

[6]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[7]

G. P. Galdi, J. Heywood and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest,, Arch. Rational Mech. Anal., 138 (1997), 307. doi: 10.1007/s002050050043. Google Scholar

[8]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[9]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Rational Mech. Anal., 89 (1985), 267. Google Scholar

[10]

T. Kato, Strong $L^p$-solution of the Navier-Stokes equation in $\mathbbR^n$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[11]

H. Kozono and T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two dimensional unbounded domains,, Arch. Rational Mech. Anal., 122 (1993), 1. doi: 10.1007/BF01816552. Google Scholar

[12]

H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains,, Arch. Rational Mech. Anal., 128 (1994), 1. doi: 10.1007/BF00380792. Google Scholar

[13]

P. Maremonti, Stabilità asintotica in media per moti fluidi viscosi in domini esterni,, Annali di Matematica Pura ed Applicata, 142 (1985), 57. Google Scholar

[14]

P. Maremonti, On the asymptotic behavior of the $L^2$-norm of suitable weak solutions to the Navier-Stokes equations in three-dimensional exterior domains,, Comm. Math. Phys., 118 (1988), 385. doi: 10.1007/BF01466723. Google Scholar

[15]

P. Maremonti, Some results on the asymptotic behavior of Hopf weak solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 210 (1992), 1. doi: 10.1007/BF02571780. Google Scholar

[16]

P. Maremonti, A remark on the Stokes problem with initial data in $L^1$,, J. Math. Fluid Mech., 13 (2011), 469. doi: 10.1007/s00021-010-0036-8. Google Scholar

[17]

P. Maremonti, A remark on the Stokes problem in Lorentz spaces,, Discrete and Continuous Dynamical Systems, 6 (2013), 1323. doi: 10.3934/dcdss.2013.6.1323. Google Scholar

[18]

P. Maremonti, On the Stokes problem in exterior domains: The maximum modulus theorem,, Discrete and Continuous Dynamical Systems, 34 (2014), 2135. doi: 10.3934/dcds.2014.34.2135. Google Scholar

[19]

P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes system in exterior domains,, Zap. Nauch. Sem. LOMI, 180 (1990), 105. doi: 10.1007/BF01249337. Google Scholar

[20]

P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains,, Ann. Sc. Norm. Sup. Pisa, 24 (1997), 395. Google Scholar

[21]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, J. Soviet Math., 8 (1977), 467. doi: 10.1007/BF01084616. Google Scholar

[22]

M. Yamazaki, The Navier-Stokes equations in the weak-Ln external force,, Math. Ann., 317 (2000), 635. doi: 10.1007/PL00004418. Google Scholar

[1]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[2]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[3]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[4]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[5]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[6]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[7]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[8]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[9]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[10]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[11]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[12]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[13]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[14]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[15]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[16]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[17]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[18]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[19]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

[20]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]