# American Institute of Mathematical Sciences

February  2016, 9(1): 235-253. doi: 10.3934/dcdss.2016.9.235

## Spectral approximation of the curl operator in multiply connected domains

 1 CI2MA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, Chile 2 Department of Mathematics, University of Maryland, College Park, MD 20742, United States

Received  September 2014 Revised  February 2015 Published  December 2015

A numerical scheme based on Nédélec finite elements has been recently introduced to solve the eigenvalue problem for the curl operator in simply connected domains. This topological assumption is not just a technicality, since the eigenvalue problem is ill-posed on multiply connected domains, in the sense that its spectrum is the whole complex plane. However, additional constraints can be added to the eigenvalue problem in order to recover a well-posed problem with a discrete spectrum. Vanishing circulations on each non-bounding cycle in the complement of the domain have been chosen as additional constraints in this paper. A mixed weak formulation including a Lagrange multiplier (that turns out to vanish) is introduced and shown to be well-posed. This formulation is discretized by Nédélec elements, while standard finite elements are used for the Lagrange multiplier. Spectral convergence is proved as well as a priori error estimates. It is also shown how to implement this finite element discretization taking care of these additional constraints. Finally, a numerical test to assess the performance of the proposed methods is reported.
Citation: Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235
##### References:
 [1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823. doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B. Google Scholar [2] E. Beltrami, Considerazioni idrodinamiche,, Il Nuovo Cimento (1877-1894), 25 (1889), 1877. doi: 10.1007/BF02719090. Google Scholar [3] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations,, SIAM J. Numer. Anal., 40 (2002), 1823. doi: 10.1137/S0036142901390780. Google Scholar [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar [5] S. Chandrasekhar and P. C. Kendall, On force-free magnetic fields,, Astrophys. J., 126 (1957), 457. doi: 10.1086/146413. Google Scholar [6] S. Chandrasekhar and L. Woltjer, On force-free magnetic fields,, Proc. Nat. Acad. Sci. USA, 44 (1958), 285. doi: 10.1073/pnas.44.4.285. Google Scholar [7] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phńomènes successifs de bifurcation,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 28. Google Scholar [8] V. Girault and P.-A Raviart, Finite Element Approximations of the Navier-Stokes Equations, Theory and Algorithms,, Springer, (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar [9] R. Hiptmair, P. R. Kotiuga and S. Tordeux, Self-adjoint curl operators,, Ann. Mat. Pura Appl., 191 (2012), 431. doi: 10.1007/s10231-011-0189-y. Google Scholar [10] E. Lara, Espectro del operador rotacional en dominios no simplemente conexos,, Mathematical Engineering thesis, (2013). Google Scholar [11] S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem,, $M^2AN$, 37 (2003), 291. doi: 10.1051/m2an:2003027. Google Scholar [12] B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods,, Math. Comp., 36 (1981), 427. doi: 10.1090/S0025-5718-1981-0606505-9. Google Scholar [13] P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001. Google Scholar [14] R. Rodríguez and P. Venegas, Numerical approximation of the spectrum of the curl operator,, Math. Comp., 83 (2014), 553. doi: 10.1090/S0025-5718-2013-02745-7. Google Scholar [15] L. Woltjer, A theorem on force-free magnetic fields,, Proc. Natl. Acad. Sci. USA, 44 (1958), 489. doi: 10.1073/pnas.44.6.489. Google Scholar [16] _________, The crab nebula,, Bull. Astron. Inst. Neth., 14 (1958), 39. Google Scholar [17] J. Xiao and Q. Hu, An iterative method for computing Beltrami fields on bounded domains,, Institute of Computational Mathematics and Scientific/Engineering Computing, (2012), 12. Google Scholar [18] Z. Yoshida and Y. Giga, Remarks on spectra of operator rot,, Math. Z., 204 (1990), 235. doi: 10.1007/BF02570870. Google Scholar

show all references

##### References:
 [1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823. doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B. Google Scholar [2] E. Beltrami, Considerazioni idrodinamiche,, Il Nuovo Cimento (1877-1894), 25 (1889), 1877. doi: 10.1007/BF02719090. Google Scholar [3] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations,, SIAM J. Numer. Anal., 40 (2002), 1823. doi: 10.1137/S0036142901390780. Google Scholar [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar [5] S. Chandrasekhar and P. C. Kendall, On force-free magnetic fields,, Astrophys. J., 126 (1957), 457. doi: 10.1086/146413. Google Scholar [6] S. Chandrasekhar and L. Woltjer, On force-free magnetic fields,, Proc. Nat. Acad. Sci. USA, 44 (1958), 285. doi: 10.1073/pnas.44.4.285. Google Scholar [7] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phńomènes successifs de bifurcation,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 28. Google Scholar [8] V. Girault and P.-A Raviart, Finite Element Approximations of the Navier-Stokes Equations, Theory and Algorithms,, Springer, (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar [9] R. Hiptmair, P. R. Kotiuga and S. Tordeux, Self-adjoint curl operators,, Ann. Mat. Pura Appl., 191 (2012), 431. doi: 10.1007/s10231-011-0189-y. Google Scholar [10] E. Lara, Espectro del operador rotacional en dominios no simplemente conexos,, Mathematical Engineering thesis, (2013). Google Scholar [11] S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem,, $M^2AN$, 37 (2003), 291. doi: 10.1051/m2an:2003027. Google Scholar [12] B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods,, Math. Comp., 36 (1981), 427. doi: 10.1090/S0025-5718-1981-0606505-9. Google Scholar [13] P. Monk, Finite Element Methods for Maxwell's Equations,, Clarendon Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001. Google Scholar [14] R. Rodríguez and P. Venegas, Numerical approximation of the spectrum of the curl operator,, Math. Comp., 83 (2014), 553. doi: 10.1090/S0025-5718-2013-02745-7. Google Scholar [15] L. Woltjer, A theorem on force-free magnetic fields,, Proc. Natl. Acad. Sci. USA, 44 (1958), 489. doi: 10.1073/pnas.44.6.489. Google Scholar [16] _________, The crab nebula,, Bull. Astron. Inst. Neth., 14 (1958), 39. Google Scholar [17] J. Xiao and Q. Hu, An iterative method for computing Beltrami fields on bounded domains,, Institute of Computational Mathematics and Scientific/Engineering Computing, (2012), 12. Google Scholar [18] Z. Yoshida and Y. Giga, Remarks on spectra of operator rot,, Math. Z., 204 (1990), 235. doi: 10.1007/BF02570870. Google Scholar
 [1] P. Robert Kotiuga. On the topological characterization of near force-free magnetic fields, and the work of late-onset visually-impaired topologists. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 215-234. doi: 10.3934/dcdss.2016.9.215 [2] Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181 [3] Jürgen Scheurle, Stephan Schmitz. A criterion for asymptotic straightness of force fields. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 777-792. doi: 10.3934/dcdsb.2010.14.777 [4] Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100 [5] Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631 [6] Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63 [7] Nazar Arakelian, Saeed Tafazolian, Fernando Torres. On the spectrum for the genera of maximal curves over small fields. Advances in Mathematics of Communications, 2018, 12 (1) : 143-149. doi: 10.3934/amc.2018009 [8] Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281 [9] Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281 [10] Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic & Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669 [11] Alexander Gorodnik. Open problems in dynamics and related fields. Journal of Modern Dynamics, 2007, 1 (1) : 1-35. doi: 10.3934/jmd.2007.1.1 [12] Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031 [13] Francesco Cellarosi, Ilya Vinogradov. Ergodic properties of $k$-free integers in number fields. Journal of Modern Dynamics, 2013, 7 (3) : 461-488. doi: 10.3934/jmd.2013.7.461 [14] Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107 [15] Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 [16] Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459 [17] Robert Granger, Thorsten Kleinjung, Jens Zumbrägel. Indiscreet logarithms in finite fields of small characteristic. Advances in Mathematics of Communications, 2018, 12 (2) : 263-286. doi: 10.3934/amc.2018017 [18] Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203 [19] Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022 [20] Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure & Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295

2018 Impact Factor: 0.545