• Previous Article
    On the topological characterization of near force-free magnetic fields, and the work of late-onset visually-impaired topologists
  • DCDS-S Home
  • This Issue
  • Next Article
    On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
February  2016, 9(1): 185-214. doi: 10.3934/dcdss.2016.9.185

Stabilized Galerkin for transient advection of differential forms

1. 

EP CASTOR, INRIA Méditerranée and University Nice-Sophia Antipolis, 2004 Route des Lucioles, Sophia Antipolis, France

2. 

Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, Zürich, Switzerland, Switzerland

Received  September 2014 Revised  February 2015 Published  December 2015

We deal with the discretization of generalized transient advection problems for differential forms on bounded spatial domains. We pursue an Eulerian method of lines approach with explicit timestepping. Concerning spatial discretization we extend the jump stabilized Galerkin discretization proposed in $[$ H. HEUMANN and R.HIPTMAIR, Stabilized Galerkin methods for magnetic advection, Math. Modelling Numer. Analysis, 47 (2013), pp.1713--1732$]$ to forms of any degree and, in particular, advection velocities that may have discontinuities resolved by the mesh. A rigorous a priori convergence theory is established for Lipschitz continuous velocities, conforming meshes and standard finite element spaces of discrete differential forms. However, numerical experiments furnish evidence of the good performance of the new method also in the presence of jumps of the advection velocity.
Citation: Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio, The flow associated to weakly differentiable vector fields: Recent results and open problems,, in Nonlinear Conservation Laws and Applications, (2011), 181. doi: 10.1007/978-1-4419-9554-4_7. Google Scholar

[3]

D. N. Arnold, Spaces of finite element differential forms,, in Analysis and Numerics of Partial Differential Equations, (2013), 117. doi: 10.1007/978-88-470-2592-9_9. Google Scholar

[4]

D. N. Arnold, D. Boffi and F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties,, Numer. Math., 129 (2015), 1. doi: 10.1007/s00211-014-0631-3. Google Scholar

[5]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications,, Acta Numer., 15 (2006), 1. doi: 10.1017/S0962492906210018. Google Scholar

[6]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 281. doi: 10.1090/S0273-0979-10-01278-4. Google Scholar

[7]

A. Bossavit, On the geometry of electromagnetism. (2): 'Geometrical objects',, J. Japan Soc. Appl. Electromagn. and Mech., 6 (1998), 114. Google Scholar

[8]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral,, J. Hyperbolic Differ. Equ., 10 (2013), 235. doi: 10.1142/S0219891613500100. Google Scholar

[9]

F. Boyer, Analysis of the upwind finite volume method for general initial- and boundary-value transport problems,, IMA J. Numer. Anal., 32 (2012), 1404. doi: 10.1093/imanum/drr031. Google Scholar

[10]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, $3^{rd}$ edition, (2008). doi: 10.1007/978-0-387-75934-0. Google Scholar

[11]

F. Brezzi, J. Douglas, Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems,, Numer. Math., 47 (1985), 217. doi: 10.1007/BF01389710. Google Scholar

[12]

F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems,, Math. Models Methods Appl. Sci., 14 (2004), 1893. doi: 10.1142/S0218202504003866. Google Scholar

[13]

E. Burman, A. Ern and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems,, SIAM J. Numer. Anal., 48 (2010), 2019. doi: 10.1137/090757940. Google Scholar

[14]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland Publishing Co., (1978). Google Scholar

[15]

G. Crippa and C. De Lellis, Regularity and compactness for the DiPerna-Lions flow,, in Hyperbolic problems: Theory, (2008), 423. doi: 10.1007/978-3-540-75712-2_39. Google Scholar

[16]

P. A. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[17]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations,, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 277. doi: 10.1016/S1874-5717(07)80007-7. Google Scholar

[18]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[19]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements,, Applied Mathematical Sciences, (2004). doi: 10.1007/978-1-4757-4355-5. Google Scholar

[20]

K. O. Friedrichs, Symmetric positive linear differential equations,, Comm. Pure Appl. Math., 11 (1958), 333. doi: 10.1002/cpa.3160110306. Google Scholar

[21]

F. G. Fuchs, A. D. McMurry, S. Mishra, N. H. Risebro and K. Waagan, Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations,, Commun. Comput. Phys., 9 (2011), 324. doi: 10.4208/cicp.171109.070510a. Google Scholar

[22]

H. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511616945. Google Scholar

[23]

H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms,, ETH dissertation 19608, (1960). doi: 10.3929/ethz-a-006506738. Google Scholar

[24]

H. Heumann and R. Hiptmair, Stabilized Galerkin methods for magnetic advection,, ESAIM Math. Model. Numer. Anal., 47 (2013), 1713. doi: 10.1051/m2an/2013085. Google Scholar

[25]

H. Heumann and R. Hiptmair, Convergence of Lowest Order Semi-Lagrangian Schemes,, Found. Comput. Math., 13 (2013), 187. doi: 10.1007/s10208-012-9139-3. Google Scholar

[26]

H. Heumann, R. Hiptmair and C. Pagliantini, Stabilized Galerkin for Transient Advection of Differential Forms,, Technical Report 2015-06, (2015), 2015. Google Scholar

[27]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numer., 11 (2002), 237. doi: 10.1017/S0962492902000041. Google Scholar

[28]

P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations,, Numer. Math., 100 (2005), 485. doi: 10.1007/s00211-005-0604-7. Google Scholar

[29]

O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems,, SIAM J. Numer. Anal., 41 (2003), 2374. doi: 10.1137/S0036142902405217. Google Scholar

[30]

T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type,, in Hyperbolicity, (1976), 125. doi: 10.1007/978-3-642-11105-1_4. Google Scholar

[31]

J. M. Lee, Introduction to Smooth Manifolds,, $2^{nd}$ edition, (2013). Google Scholar

[32]

D. Levy and E. Tadmor, From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method,, SIAM Rev., 40 (1998), 40. doi: 10.1137/S0036144597316255. Google Scholar

[33]

S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions,, J. Comput. Phys., 231 (2012), 3365. doi: 10.1016/j.jcp.2012.01.011. Google Scholar

[34]

S. A. Orszag and C. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence,, J. Fluid Mech., 90 (1979), 129. doi: 10.1017/S002211207900210X. Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[36]

T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation,, SIAM J. Numer. Anal., 28 (1991), 133. doi: 10.1137/0728006. Google Scholar

[37]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in Mathematical Aspects of Finite Element Methods (Proc. Conf., (1975), 292. Google Scholar

[38]

G. Schwarz, Hodge Decomposition-a Method for Solving Boundary Value Problems,, Lecture Notes in Mathematics, (1607). Google Scholar

[39]

N. J. Walkington, Convergence of the discontinuous Galerkin method for discontinuous solutions,, SIAM J. Numer. Anal., 42 (2005), 1801. doi: 10.1137/S0036142902412233. Google Scholar

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio, The flow associated to weakly differentiable vector fields: Recent results and open problems,, in Nonlinear Conservation Laws and Applications, (2011), 181. doi: 10.1007/978-1-4419-9554-4_7. Google Scholar

[3]

D. N. Arnold, Spaces of finite element differential forms,, in Analysis and Numerics of Partial Differential Equations, (2013), 117. doi: 10.1007/978-88-470-2592-9_9. Google Scholar

[4]

D. N. Arnold, D. Boffi and F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties,, Numer. Math., 129 (2015), 1. doi: 10.1007/s00211-014-0631-3. Google Scholar

[5]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications,, Acta Numer., 15 (2006), 1. doi: 10.1017/S0962492906210018. Google Scholar

[6]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 281. doi: 10.1090/S0273-0979-10-01278-4. Google Scholar

[7]

A. Bossavit, On the geometry of electromagnetism. (2): 'Geometrical objects',, J. Japan Soc. Appl. Electromagn. and Mech., 6 (1998), 114. Google Scholar

[8]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral,, J. Hyperbolic Differ. Equ., 10 (2013), 235. doi: 10.1142/S0219891613500100. Google Scholar

[9]

F. Boyer, Analysis of the upwind finite volume method for general initial- and boundary-value transport problems,, IMA J. Numer. Anal., 32 (2012), 1404. doi: 10.1093/imanum/drr031. Google Scholar

[10]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, $3^{rd}$ edition, (2008). doi: 10.1007/978-0-387-75934-0. Google Scholar

[11]

F. Brezzi, J. Douglas, Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems,, Numer. Math., 47 (1985), 217. doi: 10.1007/BF01389710. Google Scholar

[12]

F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems,, Math. Models Methods Appl. Sci., 14 (2004), 1893. doi: 10.1142/S0218202504003866. Google Scholar

[13]

E. Burman, A. Ern and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems,, SIAM J. Numer. Anal., 48 (2010), 2019. doi: 10.1137/090757940. Google Scholar

[14]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland Publishing Co., (1978). Google Scholar

[15]

G. Crippa and C. De Lellis, Regularity and compactness for the DiPerna-Lions flow,, in Hyperbolic problems: Theory, (2008), 423. doi: 10.1007/978-3-540-75712-2_39. Google Scholar

[16]

P. A. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[17]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations,, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 277. doi: 10.1016/S1874-5717(07)80007-7. Google Scholar

[18]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[19]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements,, Applied Mathematical Sciences, (2004). doi: 10.1007/978-1-4757-4355-5. Google Scholar

[20]

K. O. Friedrichs, Symmetric positive linear differential equations,, Comm. Pure Appl. Math., 11 (1958), 333. doi: 10.1002/cpa.3160110306. Google Scholar

[21]

F. G. Fuchs, A. D. McMurry, S. Mishra, N. H. Risebro and K. Waagan, Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations,, Commun. Comput. Phys., 9 (2011), 324. doi: 10.4208/cicp.171109.070510a. Google Scholar

[22]

H. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511616945. Google Scholar

[23]

H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms,, ETH dissertation 19608, (1960). doi: 10.3929/ethz-a-006506738. Google Scholar

[24]

H. Heumann and R. Hiptmair, Stabilized Galerkin methods for magnetic advection,, ESAIM Math. Model. Numer. Anal., 47 (2013), 1713. doi: 10.1051/m2an/2013085. Google Scholar

[25]

H. Heumann and R. Hiptmair, Convergence of Lowest Order Semi-Lagrangian Schemes,, Found. Comput. Math., 13 (2013), 187. doi: 10.1007/s10208-012-9139-3. Google Scholar

[26]

H. Heumann, R. Hiptmair and C. Pagliantini, Stabilized Galerkin for Transient Advection of Differential Forms,, Technical Report 2015-06, (2015), 2015. Google Scholar

[27]

R. Hiptmair, Finite elements in computational electromagnetism,, Acta Numer., 11 (2002), 237. doi: 10.1017/S0962492902000041. Google Scholar

[28]

P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations,, Numer. Math., 100 (2005), 485. doi: 10.1007/s00211-005-0604-7. Google Scholar

[29]

O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems,, SIAM J. Numer. Anal., 41 (2003), 2374. doi: 10.1137/S0036142902405217. Google Scholar

[30]

T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type,, in Hyperbolicity, (1976), 125. doi: 10.1007/978-3-642-11105-1_4. Google Scholar

[31]

J. M. Lee, Introduction to Smooth Manifolds,, $2^{nd}$ edition, (2013). Google Scholar

[32]

D. Levy and E. Tadmor, From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method,, SIAM Rev., 40 (1998), 40. doi: 10.1137/S0036144597316255. Google Scholar

[33]

S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions,, J. Comput. Phys., 231 (2012), 3365. doi: 10.1016/j.jcp.2012.01.011. Google Scholar

[34]

S. A. Orszag and C. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence,, J. Fluid Mech., 90 (1979), 129. doi: 10.1017/S002211207900210X. Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[36]

T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation,, SIAM J. Numer. Anal., 28 (1991), 133. doi: 10.1137/0728006. Google Scholar

[37]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in Mathematical Aspects of Finite Element Methods (Proc. Conf., (1975), 292. Google Scholar

[38]

G. Schwarz, Hodge Decomposition-a Method for Solving Boundary Value Problems,, Lecture Notes in Mathematics, (1607). Google Scholar

[39]

N. J. Walkington, Convergence of the discontinuous Galerkin method for discontinuous solutions,, SIAM J. Numer. Anal., 42 (2005), 1801. doi: 10.1137/S0036142902412233. Google Scholar

[1]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[2]

Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404

[3]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[4]

Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006

[5]

R.D.S. Oliveira, F. Tari. On pairs of differential $1$-forms in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 519-536. doi: 10.3934/dcds.2000.6.519

[6]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[7]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[8]

Carlos Gutierrez, Víctor Guíñez, Alvaro Castañeda. Quartic differential forms and transversal nets with singularities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 225-249. doi: 10.3934/dcds.2010.26.225

[9]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[10]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[11]

Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471

[12]

Dorina Mitrea and Marius Mitrea. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic Research Announcements, 1996, 2: 92-97.

[13]

Dorina Mitrea, Irina Mitrea, Marius Mitrea, Lixin Yan. Coercive energy estimates for differential forms in semi-convex domains. Communications on Pure & Applied Analysis, 2010, 9 (4) : 987-1010. doi: 10.3934/cpaa.2010.9.987

[14]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[15]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[16]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[17]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[18]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[19]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[20]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]