February  2015, 8(1): 45-54. doi: 10.3934/dcdss.2015.8.45

Paralic confinement computations in coastal environment with interlocked areas

1. 

INRIA, Virtual Plants, C.C. 06002, 95 rue de la Galéra, 34095 Montpellier Cedex 5

2. 

Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes

3. 

Inria, Team LEMON, 95 rue de la Galéra, 34090 Montpellier, France

Received  March 2013 Revised  May 2013 Published  July 2014

This paper is in the continuity of a work program, initiated in Frénod & Goubert [4], Frénod & Rousseau [5] and Bernard, Frénod & Rousseau [2]. Its goal is to develop an approach of the paralic confinement usable from the modeling slant, before implementing it in numerical tools.
    More specifically, we here deal with the multiscale aspect of the confinement. If a paralic environment is separated into two (or more) connected areas, we will show that is possible to split the confinement problem into two related problems, one for each area. At the end of this paper, we will focus on the importance of the interface length between the two subdomains.
Citation: Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Paralic confinement computations in coastal environment with interlocked areas. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 45-54. doi: 10.3934/dcdss.2015.8.45
References:
[1]

Barnes, A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal Europe,, Estuarine, 38 (1994), 41. Google Scholar

[2]

J.-P. Bernard, E. Frenod and A. Rousseau, Modeling confinement in Etang de Thau: Numerical simulations and multi-scale aspects,, AIMS Proceedings, (). Google Scholar

[3]

J.-P. Debenay, J.-P. Perthuisot and B. Colleuil, Expression numérique du confinement par les peuplements de foraminifères. App. aux domaines paral. actuels Afri. W.,, C. R. Acad. Sci., 316 (1993), 1823. Google Scholar

[4]

E. Frénod and E. Goubert, A first step towards modelling confinement of paralic ecosystems,, Ecological Modelling, 200 (2007), 139. Google Scholar

[5]

E. Frénod and A. Rousseau, Paralic Confinement: Models and Simulations,, Acta Appl. Math., 123 (2013), 1. doi: 10.1007/s10440-012-9706-2. Google Scholar

[6]

O. Guélorget, G. F. Frisoni and J.-P. Perthuisot, La zonation biologique des milieux lagunaires : Définition d'une échelle de confinement dans le domaine paralique méditérranéen,, Journal de Recherche Océanographique, 8 (1983), 15. Google Scholar

[7]

O. Guélorget, D. Gaujous, M. Louis and J.-P. Perthuisot, Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles): Role and expression of confinement,, Journal of Coastal Research, 6 (1990), 611. Google Scholar

[8]

O. Guélorget and J.-P. Perthuisot, Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique,, Sciences Géologiques, 14 (1983), 25. Google Scholar

[9]

O. Guélorget and J.-P. Perthuisot, Le domaine paralique. Expressions géologiques biologique, et économique du confinement,, Presse de l'école normale supérieure 16-1983, (1983), 16. Google Scholar

[10]

L. Halpern, Artificial boundary conditions for the linear advection diffusion equation,, Math. Comp., 46 (1986), 425. doi: 10.1090/S0025-5718-1986-0829617-8. Google Scholar

[11]

, F. Hecht, O. Pironneau and A. Le Hyaric,, FreeFem++ manual., (). Google Scholar

[12]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin and J.-P. Perthuisot, Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte),, Oceanologica Acta, 8 (1985), 303. Google Scholar

[13]

J. Poiseuille, Le mouvement des liquides dans les tubes de petits diamètres,, 1844., (). Google Scholar

[14]

F. Redois and J.-P. Debenay, Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale,, Revue de Paléobiologie, 15 (1996), 243. Google Scholar

[15]

D. Tagliapietra, M. Sigovini and V. Ghirardini, A review of terms and definitions to categorise estuaries, lagoons and associated environments,, Marine and Freshwater Research, 60 (2009), 497. doi: 10.1071/MF08088. Google Scholar

show all references

References:
[1]

Barnes, A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal Europe,, Estuarine, 38 (1994), 41. Google Scholar

[2]

J.-P. Bernard, E. Frenod and A. Rousseau, Modeling confinement in Etang de Thau: Numerical simulations and multi-scale aspects,, AIMS Proceedings, (). Google Scholar

[3]

J.-P. Debenay, J.-P. Perthuisot and B. Colleuil, Expression numérique du confinement par les peuplements de foraminifères. App. aux domaines paral. actuels Afri. W.,, C. R. Acad. Sci., 316 (1993), 1823. Google Scholar

[4]

E. Frénod and E. Goubert, A first step towards modelling confinement of paralic ecosystems,, Ecological Modelling, 200 (2007), 139. Google Scholar

[5]

E. Frénod and A. Rousseau, Paralic Confinement: Models and Simulations,, Acta Appl. Math., 123 (2013), 1. doi: 10.1007/s10440-012-9706-2. Google Scholar

[6]

O. Guélorget, G. F. Frisoni and J.-P. Perthuisot, La zonation biologique des milieux lagunaires : Définition d'une échelle de confinement dans le domaine paralique méditérranéen,, Journal de Recherche Océanographique, 8 (1983), 15. Google Scholar

[7]

O. Guélorget, D. Gaujous, M. Louis and J.-P. Perthuisot, Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles): Role and expression of confinement,, Journal of Coastal Research, 6 (1990), 611. Google Scholar

[8]

O. Guélorget and J.-P. Perthuisot, Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique,, Sciences Géologiques, 14 (1983), 25. Google Scholar

[9]

O. Guélorget and J.-P. Perthuisot, Le domaine paralique. Expressions géologiques biologique, et économique du confinement,, Presse de l'école normale supérieure 16-1983, (1983), 16. Google Scholar

[10]

L. Halpern, Artificial boundary conditions for the linear advection diffusion equation,, Math. Comp., 46 (1986), 425. doi: 10.1090/S0025-5718-1986-0829617-8. Google Scholar

[11]

, F. Hecht, O. Pironneau and A. Le Hyaric,, FreeFem++ manual., (). Google Scholar

[12]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin and J.-P. Perthuisot, Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte),, Oceanologica Acta, 8 (1985), 303. Google Scholar

[13]

J. Poiseuille, Le mouvement des liquides dans les tubes de petits diamètres,, 1844., (). Google Scholar

[14]

F. Redois and J.-P. Debenay, Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale,, Revue de Paléobiologie, 15 (1996), 243. Google Scholar

[15]

D. Tagliapietra, M. Sigovini and V. Ghirardini, A review of terms and definitions to categorise estuaries, lagoons and associated environments,, Marine and Freshwater Research, 60 (2009), 497. doi: 10.1071/MF08088. Google Scholar

[1]

Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69

[2]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019061

[3]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[4]

T. J. Newman. Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005, 2 (3) : 613-624. doi: 10.3934/mbe.2005.2.613

[5]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[6]

Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289

[7]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[8]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[9]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[11]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[12]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[13]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[14]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[15]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[16]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[17]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[18]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[19]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[20]

Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]