October  2014, 7(5): 887-900. doi: 10.3934/dcdss.2014.7.887

Some uniqueness result of the Stokes flow in a half space in a space of bounded functions

1. 

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan

Received  March 2013 Revised  October 2013 Published  May 2014

This paper presents a uniqueness theorem for the Stokes equations in a half space in a space of bounded functions. The Stokes equations is well understood for decaying velocity as $|x|\to\infty$, but less known for non-decaying velocity even for a half space. This paper presents a uniqueness theorem on $L^{\infty}(\mathbb{R}_+^n)$ for unbounded velocity as $t\downarrow 0$. Under suitable sup-bounds both for velocity and pressure gradient, a uniqueness theorem for non-decaying velocity is proved.
Citation: Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887
References:
[1]

K. Abe, The Stokes Semigroup on Non-Decaying Spaces,, Ph.D thesis, (2013). Google Scholar

[2]

K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,, Acta Math., 211 (2013), 1. doi: 10.1007/s11511-013-0098-6. Google Scholar

[3]

K. Abe and Y. Giga, The $L^{\infty}$-Stokes semigroup in exterior domains,, J. Evol. Equ., 14 (2014), 1. doi: 10.1007/s00028-013-0197-z. Google Scholar

[4]

K. Abe, Y. Giga and M. Hieber, Stokes Resolvent Estimates in Spaces of Bounded Functions,, Hokkaido University Preprint Series in Mathematics, (2012). Google Scholar

[5]

H.-O. Bae and B. Jin, Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data,, J. Korean Math. Soc., 49 (2012), 113. doi: 10.4134/JKMS.2012.49.1.113. Google Scholar

[6]

W. Desch, M. Hieber and J. Prüss, $L^p$-theory of the Stokes equation in a half space,, J. Evol. Equ., 1 (2001), 115. doi: 10.1007/PL00001362. Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[8]

Y. Giga, S. Matsui and Y. Shimizu, On estimates in Hardy spaces for the Stokes flow in a half space,, Math. Z., 231 (1999), 383. doi: 10.1007/PL00004735. Google Scholar

[9]

G. de Rham, Differentiable Manifolds,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-61752-2. Google Scholar

[10]

J. Saal, The Stokes operator with Robin boundary conditions in solenoidal subspaces of $L^1(\mathbbR^n_+)$ and $L^\infty(\mathbbR^n_+)$,, Communications in Partial Differential Equations, 32 (2007), 343. doi: 10.1080/03605300601160408. Google Scholar

[11]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in Mathematical problems relating to the Navier-Stokes equation, (1992), 1. Google Scholar

[12]

V. A. Solonnikov, On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity,, Function theory and applications, 114 (2003), 1726. doi: 10.1023/A:1022317029111. Google Scholar

[13]

V. A. Solonnikov, Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator,, Russian, 58 (2003), 123. doi: 10.1070/RM2003v058n02ABEH000613. Google Scholar

[14]

S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$,, Comm. Pure Appl. Math., 40 (1987), 611. doi: 10.1002/cpa.3160400506. Google Scholar

show all references

References:
[1]

K. Abe, The Stokes Semigroup on Non-Decaying Spaces,, Ph.D thesis, (2013). Google Scholar

[2]

K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,, Acta Math., 211 (2013), 1. doi: 10.1007/s11511-013-0098-6. Google Scholar

[3]

K. Abe and Y. Giga, The $L^{\infty}$-Stokes semigroup in exterior domains,, J. Evol. Equ., 14 (2014), 1. doi: 10.1007/s00028-013-0197-z. Google Scholar

[4]

K. Abe, Y. Giga and M. Hieber, Stokes Resolvent Estimates in Spaces of Bounded Functions,, Hokkaido University Preprint Series in Mathematics, (2012). Google Scholar

[5]

H.-O. Bae and B. Jin, Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data,, J. Korean Math. Soc., 49 (2012), 113. doi: 10.4134/JKMS.2012.49.1.113. Google Scholar

[6]

W. Desch, M. Hieber and J. Prüss, $L^p$-theory of the Stokes equation in a half space,, J. Evol. Equ., 1 (2001), 115. doi: 10.1007/PL00001362. Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[8]

Y. Giga, S. Matsui and Y. Shimizu, On estimates in Hardy spaces for the Stokes flow in a half space,, Math. Z., 231 (1999), 383. doi: 10.1007/PL00004735. Google Scholar

[9]

G. de Rham, Differentiable Manifolds,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-61752-2. Google Scholar

[10]

J. Saal, The Stokes operator with Robin boundary conditions in solenoidal subspaces of $L^1(\mathbbR^n_+)$ and $L^\infty(\mathbbR^n_+)$,, Communications in Partial Differential Equations, 32 (2007), 343. doi: 10.1080/03605300601160408. Google Scholar

[11]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in Mathematical problems relating to the Navier-Stokes equation, (1992), 1. Google Scholar

[12]

V. A. Solonnikov, On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity,, Function theory and applications, 114 (2003), 1726. doi: 10.1023/A:1022317029111. Google Scholar

[13]

V. A. Solonnikov, Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator,, Russian, 58 (2003), 123. doi: 10.1070/RM2003v058n02ABEH000613. Google Scholar

[14]

S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$,, Comm. Pure Appl. Math., 40 (1987), 611. doi: 10.1002/cpa.3160400506. Google Scholar

[1]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[2]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[3]

Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319

[4]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[5]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[6]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[7]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[8]

Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225

[9]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[10]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[11]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

[12]

François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355

[13]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[14]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[15]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[16]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure & Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[17]

Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457

[18]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[19]

Hassib Selmi, Lassaad Elasmi, Giovanni Ghigliotti, Chaouqi Misbah. Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1065-1076. doi: 10.3934/dcdsb.2011.15.1065

[20]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]