April  2013, 6(4): 999-1016. doi: 10.3934/dcdss.2013.6.999

Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences

2. 

19 Bol.Karetny Lane, Moscow GSP-4, 127994, Russia; National Research University Higher School of Economics

3. 

20 Myasnitskaya Street, Moscow 101000

Received  April 2011 Revised  February 2012 Published  December 2012

Autonomous higher order differential equations with scalarnonlinearities, periodic with respect to the main phasevariable under appropriate generic conditions, have an infinitesequence of isolated cycles with amplitudes growing to infinityand periods converging to some specific value $T_{0}$.
Citation: Alexander M. Krasnoselskii. Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 999-1016. doi: 10.3934/dcdss.2013.6.999
References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975). Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995). Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002). Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117. Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59. Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445. doi: 10.1016/S0895-7177(00)00216-8. Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660. doi: 10.1134/S1064562408050049. Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974). Google Scholar

show all references

References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975). Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995). Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002). Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117. Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59. Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445. doi: 10.1016/S0895-7177(00)00216-8. Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660. doi: 10.1134/S1064562408050049. Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974). Google Scholar

[1]

Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207

[2]

Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841

[3]

C. Rebelo. Multiple periodic solutions of second order equations with asymmetric nonlinearities. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 25-34. doi: 10.3934/dcds.1997.3.25

[4]

Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751

[5]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[6]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[7]

Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005

[8]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[9]

V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1

[10]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[11]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[12]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[13]

Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018

[14]

D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907

[15]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[16]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[17]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[18]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[19]

Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284

[20]

Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic & Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]