# American Institute of Mathematical Sciences

February  2013, 6(1): 63-99. doi: 10.3934/dcdss.2013.6.63

## Computational aspects of quasi-static crack propagation

 1 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany 2 Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25，12489 Berlin, Germany

Received  May 2011 Revised  August 2011 Published  October 2012

The focus of this note lies on the numerical analysis of models describing the propagation of a single crack in a linearly elastic material. The evolution of the crack is modeled as a rate-independent process based on the Griffith criterion. We follow two different approaches for setting up mathematically well defined models: the global energetic approach and an approach based on a viscous regularization.
We prove the convergence of solutions of fully discretized models (i.e. with respect to time and space) and derive relations between the discretization parameters (mesh size, time step size, viscosity parameter, crack increment) which guarantee the convergence of the schemes. Further, convergence rates are provided for the approximation of energy release rates by certain discrete energy release rates. Thereby we discuss both, models with self-contact conditions on the crack faces as well as models with pure Neumann conditions on the crack faces. The convergence proofs rely on regularity estimates for the elastic fields close to the crack tip and local and global finite element error estimates. Finally the theoretical results are illustrated with some numerical calculations.
Citation: Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63
##### References:
 [1] M. Costabel and M. Dauge, Crack singularities for general elliptic systems,, Math. Nachrichten, 235 (2002), 29. doi: 10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6. Google Scholar [2] G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. Google Scholar [3] P. Destuynder and M. Djaoua, Sur une interpretation mathématique de l'intégrale de Rice en théorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70. doi: 10.1002/mma.1670030106. Google Scholar [4] P. Destuynder, M. Djaoua and S. Lescure, On a numerical method for fracture mechanics,, Singularities and constructive methods for their treatment, 1121 (1985), 69. Google Scholar [5] C. Ebmeyer and J. Frehse, Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains,, Math. Nachrichten, 203 (1999), 47. Google Scholar [6] Messoud A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151. Google Scholar [7] Richard S. Falk, Error estimates for the approximation of a class of variational inequalities,, Math. Comput., 28 (1974), 963. doi: 10.1090/S0025-5718-1974-0391502-8. Google Scholar [8] G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. Google Scholar [9] A. Giacomini and M. Ponsiglione, Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity,, Math. Models Methods Appl. Sci., 16 (2006), 77. Google Scholar [10] M. Giaquinta and S. Hildebrandt, "Calculus of Variations I,", Springer-Verlag, (1996). Google Scholar [11] P. Grisvard, Singularité en élasticité,, Arch. Ration. Mech. Anal., 107 (1989), 157. doi: 10.1007/BF00286498. Google Scholar [12] D. Gross, "Bruchmechanik,", Springer Verlag, (1996). Google Scholar [13] A. M. Khludnev and J. Sokolowski, Griffith formulae for elasticity systems with unilateral conditions in domains with cracks,, Eur. J. Mech., 19 (2000), 105. doi: 10.1016/S0997-7538(00)00138-8. Google Scholar [14] A. M. Khludnev, V, A. Kovtunenko and A. Tani, Evolution of a crack with kink and non-penetration,, J. Math. Soc. Japan, 60 (2008), 1219. Google Scholar [15] N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", Philadelphia, (1988). doi: 10.1137/1.9781611970845. Google Scholar [16] D. Knees, "A Short Survey on Energy Release Rates,", Oberwolfach Report, (2011). Google Scholar [17] D. Knees and A. Mielke, Energy release rate for cracks in finite-strain elasticity,, Math. Methods Appl. Sci., 31 (2008), 501. Google Scholar [18] D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. Google Scholar [19] D. Knees, C. Zanini and A. Mielke, Crack growth in polyconvex materials,, Physica D, 239 (2010), 1470. Google Scholar [20] D. Knees and A. Schröder, "Global Spatial Regularity for an Elasticity Model with Cracks and Contact,", Math. Methods Appl. Sci., (2012). Google Scholar [21] V. A. Kondratév, Boundary value problems for elliptic equations in domains with conical or angular points,, Trans. Moscow Math. Soc., 10 (1967), 227. Google Scholar [22] G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011). Google Scholar [23] J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications,", Vol. I. Translated from the French by P. Kenneth, (1972). Google Scholar [24] V. G. Maz'ya, S. A. Nazarov and B. A. Plamenevsky, "Asymptotische Theorie elliptischer Randwertaufgaben in Singulär Gestörten Gebieten I,II,", Akademie-Verlag, (1991). Google Scholar [25] A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461. Google Scholar [26] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst. Ser. A, 25 (2009), 585. Google Scholar [27] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differ. Equ., 31 (2008), 387. Google Scholar [28] M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. Google Scholar [29] S. Nicaise and A. M. Sändig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation,, Math. Models Methods Appl. Sci., 9 (1999), 855. doi: 10.1142/S0218202599000403. Google Scholar [30] S. Nicaise and A.-M. Sändig, Dynamic crack propagation in a 2D elastic body: The out-of-plane case,, J. Math. Anal. Appl., 329 (2007), 1. Google Scholar [31] J. A. Nitsche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods,, Math. Comput., 28 (1974), 937. doi: 10.1090/S0025-5718-1974-0373325-9. Google Scholar [32] W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill Book Company, (1976). Google Scholar [33] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boun dary conditions,, Math. Comput., 54 (1996), 483. doi: 10.1090/S0025-5718-1990-1011446-7. Google Scholar [34] H. Triebel, "Theory of Function Spaces,", Monographs in Mathematics, (1983). Google Scholar [35] H. Triebel, "Theory of Function Spaces,", Reprint of the 1983, (1983). Google Scholar

show all references

##### References:
 [1] M. Costabel and M. Dauge, Crack singularities for general elliptic systems,, Math. Nachrichten, 235 (2002), 29. doi: 10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6. Google Scholar [2] G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. Google Scholar [3] P. Destuynder and M. Djaoua, Sur une interpretation mathématique de l'intégrale de Rice en théorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70. doi: 10.1002/mma.1670030106. Google Scholar [4] P. Destuynder, M. Djaoua and S. Lescure, On a numerical method for fracture mechanics,, Singularities and constructive methods for their treatment, 1121 (1985), 69. Google Scholar [5] C. Ebmeyer and J. Frehse, Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains,, Math. Nachrichten, 203 (1999), 47. Google Scholar [6] Messoud A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151. Google Scholar [7] Richard S. Falk, Error estimates for the approximation of a class of variational inequalities,, Math. Comput., 28 (1974), 963. doi: 10.1090/S0025-5718-1974-0391502-8. Google Scholar [8] G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. Google Scholar [9] A. Giacomini and M. Ponsiglione, Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity,, Math. Models Methods Appl. Sci., 16 (2006), 77. Google Scholar [10] M. Giaquinta and S. Hildebrandt, "Calculus of Variations I,", Springer-Verlag, (1996). Google Scholar [11] P. Grisvard, Singularité en élasticité,, Arch. Ration. Mech. Anal., 107 (1989), 157. doi: 10.1007/BF00286498. Google Scholar [12] D. Gross, "Bruchmechanik,", Springer Verlag, (1996). Google Scholar [13] A. M. Khludnev and J. Sokolowski, Griffith formulae for elasticity systems with unilateral conditions in domains with cracks,, Eur. J. Mech., 19 (2000), 105. doi: 10.1016/S0997-7538(00)00138-8. Google Scholar [14] A. M. Khludnev, V, A. Kovtunenko and A. Tani, Evolution of a crack with kink and non-penetration,, J. Math. Soc. Japan, 60 (2008), 1219. Google Scholar [15] N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", Philadelphia, (1988). doi: 10.1137/1.9781611970845. Google Scholar [16] D. Knees, "A Short Survey on Energy Release Rates,", Oberwolfach Report, (2011). Google Scholar [17] D. Knees and A. Mielke, Energy release rate for cracks in finite-strain elasticity,, Math. Methods Appl. Sci., 31 (2008), 501. Google Scholar [18] D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. Google Scholar [19] D. Knees, C. Zanini and A. Mielke, Crack growth in polyconvex materials,, Physica D, 239 (2010), 1470. Google Scholar [20] D. Knees and A. Schröder, "Global Spatial Regularity for an Elasticity Model with Cracks and Contact,", Math. Methods Appl. Sci., (2012). Google Scholar [21] V. A. Kondratév, Boundary value problems for elliptic equations in domains with conical or angular points,, Trans. Moscow Math. Soc., 10 (1967), 227. Google Scholar [22] G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011). Google Scholar [23] J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications,", Vol. I. Translated from the French by P. Kenneth, (1972). Google Scholar [24] V. G. Maz'ya, S. A. Nazarov and B. A. Plamenevsky, "Asymptotische Theorie elliptischer Randwertaufgaben in Singulär Gestörten Gebieten I,II,", Akademie-Verlag, (1991). Google Scholar [25] A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461. Google Scholar [26] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst. Ser. A, 25 (2009), 585. Google Scholar [27] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differ. Equ., 31 (2008), 387. Google Scholar [28] M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. Google Scholar [29] S. Nicaise and A. M. Sändig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation,, Math. Models Methods Appl. Sci., 9 (1999), 855. doi: 10.1142/S0218202599000403. Google Scholar [30] S. Nicaise and A.-M. Sändig, Dynamic crack propagation in a 2D elastic body: The out-of-plane case,, J. Math. Anal. Appl., 329 (2007), 1. Google Scholar [31] J. A. Nitsche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods,, Math. Comput., 28 (1974), 937. doi: 10.1090/S0025-5718-1974-0373325-9. Google Scholar [32] W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill Book Company, (1976). Google Scholar [33] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boun dary conditions,, Math. Comput., 54 (1996), 483. doi: 10.1090/S0025-5718-1990-1011446-7. Google Scholar [34] H. Triebel, "Theory of Function Spaces,", Monographs in Mathematics, (1983). Google Scholar [35] H. Triebel, "Theory of Function Spaces,", Reprint of the 1983, (1983). Google Scholar
 [1] Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167 [2] Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145 [3] Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256 [4] Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i [5] Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411 [6] T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215 [7] Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257 [8] Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257 [9] Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993 [10] Patrice Bertail, Stéphan Clémençon, Jessica Tressou. A storage model with random release rate for modeling exposure to food contaminants. Mathematical Biosciences & Engineering, 2008, 5 (1) : 35-60. doi: 10.3934/mbe.2008.5.35 [11] Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649 [12] Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076 [13] Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585 [14] Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 [15] Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i [16] Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591 [17] Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 [18] G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705 [19] Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267 [20] Hong Yang, Junjie Wei. Global behaviour of a delayed viral kinetic model with general incidence rate. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1573-1582. doi: 10.3934/dcdsb.2015.20.1573

2018 Impact Factor: 0.545