February  2013, 6(1): 235-255. doi: 10.3934/dcdss.2013.6.235

Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany

Received  May 2011 Revised  July 2011 Published  October 2012

An existence result for energetic solutions of rate-independent damage processes is established. We consider a body consisting of a physically linearly elastic material undergoing infinitesimally small deformations and partial damage. In [23] an existence result in the small strain setting was obtained under the assumption that the damage variable $z$ satisfies $z\in W^{1,r}(\Omega)$ with $r\in(1,\infty)$ for $\Omega⊂ \mathbb{R}^d.$ We now cover the case $r=1$. The lack of compactness in $W^{1,1}(\Omega)$ requires to do the analysis in $\mathrm{BV}(\Omega)$. This setting allows it to consider damage variables with values in {0,1}. We show that such a brittle damage model is obtained as the $\Gamma$-limit of functionals of Modica-Mortola type.
Citation: Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235
References:
[1]

L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives,, Proceedings of the American Mathematical Society, 108 (1990), 691. doi: 10.1090/S0002-9939-1990-0969514-3. Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford University Press, (2005). Google Scholar

[3]

G. Alberti, Variational models for phase transitions, an approach via gamma-convergence, 1998,, in, (2000). Google Scholar

[4]

B. Bourdin, G. Francfort and J. J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5. doi: 10.1007/s10659-007-9107-3. Google Scholar

[5]

G. Francfort and A. Garroni, A variational view of partial brittle damage evolution,, Arch. Rational Mech. Anal., 182 (2006), 125. doi: 10.1007/s00205-006-0426-5. Google Scholar

[6]

A. Fiaschi, D. Knees and U. Stefanelli, Young-measure quasi-static damage evolution,, Arch. Ration. Mech. Anal., 203 (2012), 415. Google Scholar

[7]

G. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium,, Eur. J. Mech., 12 (1993), 149. Google Scholar

[8]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models, with nonconvex elastic energies, (). doi: 10.1515/CRELLE.2006.044. Google Scholar

[9]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Internat. J. Solids Structures, 33 (1996), 1083. doi: 10.1016/0020-7683(95)00074-7. Google Scholar

[10]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fracture,, Calc. Var. Partial Differ. Equ., 22 (2005), 129. Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhäuser, (1984). Google Scholar

[12]

A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution,, Arch. Ration. Mech. Anal., 194 (2009), 585. doi: 10.1007/s00205-008-0174-9. Google Scholar

[13]

K. Hackl and H. Stumpf, Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture,, Int. J. Solids Structures, 30 (2003), 1567. Google Scholar

[14]

A. Mielke, Evolution of rate-independent systems,, in, 2 (2005), 461. Google Scholar

[15]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, Nonlinear PDE's and applications, (2028), 87. Google Scholar

[16]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. U. Mat. Ital. B, 14 (1977), 285. Google Scholar

[17]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. PDEs, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8. Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[19]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, M$^3$AS Math. Models Methods Appl. Sci., 16 (2006), 177. doi: 10.1142/S021820250600111X. Google Scholar

[20]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differ. Equ., 31 (2008), 387. Google Scholar

[21]

A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains,, J. Elasticity, 109 (2012), 235. Google Scholar

[22]

M. Thomas, "Rate-independent Damage Processes in Nonlinearly Elastic Materials,", PhD thesis, (2010). Google Scholar

[23]

M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain: existence and regularity results,, Zeit. angew. Math. Mech., 90 (2010), 88. Google Scholar

show all references

References:
[1]

L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives,, Proceedings of the American Mathematical Society, 108 (1990), 691. doi: 10.1090/S0002-9939-1990-0969514-3. Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford University Press, (2005). Google Scholar

[3]

G. Alberti, Variational models for phase transitions, an approach via gamma-convergence, 1998,, in, (2000). Google Scholar

[4]

B. Bourdin, G. Francfort and J. J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5. doi: 10.1007/s10659-007-9107-3. Google Scholar

[5]

G. Francfort and A. Garroni, A variational view of partial brittle damage evolution,, Arch. Rational Mech. Anal., 182 (2006), 125. doi: 10.1007/s00205-006-0426-5. Google Scholar

[6]

A. Fiaschi, D. Knees and U. Stefanelli, Young-measure quasi-static damage evolution,, Arch. Ration. Mech. Anal., 203 (2012), 415. Google Scholar

[7]

G. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium,, Eur. J. Mech., 12 (1993), 149. Google Scholar

[8]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models, with nonconvex elastic energies, (). doi: 10.1515/CRELLE.2006.044. Google Scholar

[9]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Internat. J. Solids Structures, 33 (1996), 1083. doi: 10.1016/0020-7683(95)00074-7. Google Scholar

[10]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fracture,, Calc. Var. Partial Differ. Equ., 22 (2005), 129. Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhäuser, (1984). Google Scholar

[12]

A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution,, Arch. Ration. Mech. Anal., 194 (2009), 585. doi: 10.1007/s00205-008-0174-9. Google Scholar

[13]

K. Hackl and H. Stumpf, Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture,, Int. J. Solids Structures, 30 (2003), 1567. Google Scholar

[14]

A. Mielke, Evolution of rate-independent systems,, in, 2 (2005), 461. Google Scholar

[15]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, Nonlinear PDE's and applications, (2028), 87. Google Scholar

[16]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. U. Mat. Ital. B, 14 (1977), 285. Google Scholar

[17]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. PDEs, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8. Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[19]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, M$^3$AS Math. Models Methods Appl. Sci., 16 (2006), 177. doi: 10.1142/S021820250600111X. Google Scholar

[20]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differ. Equ., 31 (2008), 387. Google Scholar

[21]

A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains,, J. Elasticity, 109 (2012), 235. Google Scholar

[22]

M. Thomas, "Rate-independent Damage Processes in Nonlinearly Elastic Materials,", PhD thesis, (2010). Google Scholar

[23]

M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain: existence and regularity results,, Zeit. angew. Math. Mech., 90 (2010), 88. Google Scholar

[1]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[2]

Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167

[3]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[4]

Gianni Dal Maso, Flaviana Iurlano. Fracture models as $\Gamma$-limits of damage models. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1657-1686. doi: 10.3934/cpaa.2013.12.1657

[5]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[6]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[7]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[8]

Alexander Mielke. Complete-damage evolution based on energies and stresses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 423-439. doi: 10.3934/dcdss.2011.4.423

[9]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[10]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[11]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[12]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[13]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[14]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[15]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[16]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[17]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[18]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[19]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[20]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]