2013, 6(1): 121-129. doi: 10.3934/dcdss.2013.6.121

Local minimality and crack prediction in quasi-static Griffith fracture evolution

1. 

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road,Worcester, MA 01609, United States

Received  April 2011 Revised  July 2011 Published  October 2012

The mathematical analysis developed for energy minimizing fracture evolutions has been difficult to extend to locally minimizing evolutions. The reasons for this difficulty are not obvious, and our goal in this paper is to describe in some detail what precisely the issues are and why the previous analysis in fact cannot be extended to the most natural models based on local minimality. We also indicate how the previous methods can be modified for the analysis of models based on a recent definition of stability that is a bit stronger than local minimality.
Citation: Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121
References:
[1]

L. Ambrosio, A compactness theorem for a new class of functions of bounded variation,, Boll. Un. Mat. Ital.(B), 3 (1989), 857.

[2]

L. Ambrosio and A. Braides, Energies in SBV and variational models in fracture mechanics,, in, 9 (1995), 1.

[3]

L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation,, Arch.Rational Mech. Anal., 139 (1997), 201. doi: 10.1007/s002050050051.

[4]

L. Ambrosio, E. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).

[5]

G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in $SBD(\Omega)$,, Math.Z., 228 (1998), 337. doi: 10.1007/PL00004617.

[6]

A. Chambolle, A. Giacomini and M. Ponsiglione, Crack initiation in brittle materials,, Arch. Ration. Mech. Anal., 188 (2008), 309. doi: 10.1007/s00205-007-0080-6.

[7]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Rat. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4.

[8]

G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257.

[9]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Rat. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187.

[10]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773. doi: 10.1142/S0218202502002331.

[11]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).

[12]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465. doi: 10.1002/cpa.3039.

[13]

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9.

[14]

A. Griffith, The phenomena of rupture and flow insolids,, Phil. Trans. Roy. Soc. London, CCXXI-A (1920), 163.

[15]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. doi: 10.1142/S0218202508003121.

[16]

C. J. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.

[17]

C. J. Larsen, M. Ortiz and C. L. Richardson, Fracture paths from front kinetics: relaxation and rate independence,, Arch. Ration. Mech. Anal., 193 (2009), 539. doi: 10.1007/s00205-009-0216-y.

[18]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. doi: 10.1142/S0218202508003236.

show all references

References:
[1]

L. Ambrosio, A compactness theorem for a new class of functions of bounded variation,, Boll. Un. Mat. Ital.(B), 3 (1989), 857.

[2]

L. Ambrosio and A. Braides, Energies in SBV and variational models in fracture mechanics,, in, 9 (1995), 1.

[3]

L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation,, Arch.Rational Mech. Anal., 139 (1997), 201. doi: 10.1007/s002050050051.

[4]

L. Ambrosio, E. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).

[5]

G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in $SBD(\Omega)$,, Math.Z., 228 (1998), 337. doi: 10.1007/PL00004617.

[6]

A. Chambolle, A. Giacomini and M. Ponsiglione, Crack initiation in brittle materials,, Arch. Ration. Mech. Anal., 188 (2008), 309. doi: 10.1007/s00205-007-0080-6.

[7]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Rat. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4.

[8]

G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257.

[9]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Rat. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187.

[10]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773. doi: 10.1142/S0218202502002331.

[11]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).

[12]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465. doi: 10.1002/cpa.3039.

[13]

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9.

[14]

A. Griffith, The phenomena of rupture and flow insolids,, Phil. Trans. Roy. Soc. London, CCXXI-A (1920), 163.

[15]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. doi: 10.1142/S0218202508003121.

[16]

C. J. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.

[17]

C. J. Larsen, M. Ortiz and C. L. Richardson, Fracture paths from front kinetics: relaxation and rate independence,, Arch. Ration. Mech. Anal., 193 (2009), 539. doi: 10.1007/s00205-009-0216-y.

[18]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. doi: 10.1142/S0218202508003236.

[1]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[2]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[3]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[4]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[5]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[6]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[7]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[8]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[9]

M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure & Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495

[10]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[11]

K. R. Rajagopal. The thermo-mechanics of rate-type fluids. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1133-1145. doi: 10.3934/dcdss.2012.5.1133

[12]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[13]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[14]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[15]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[16]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[17]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[18]

Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447

[19]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[20]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]