April  2013, 6(4): 1017-1027. doi: 10.3934/dcdss.2013.6.1017

On a structure of the fixed point set of homogeneous maps

1. 

Department of Mathematics

2. 

Bar-Ilan University

3. 

Ramat-Gan, 52900

Received  June 2011 Revised  September 2011 Published  December 2012

A spectral and inverse spectral problem for homogeneous polynomial maps is discussed.The $m$-independence of vectors based on the symmetric tensor powers performs as a main toolto study the structure of the spectrum. Possible restrictions on this structureare described in terms of syzygies provided by the Euler-Jacobi formula.Applications to projective dynamics are discussed.
Citation: Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017
References:
[1]

B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412. doi: 10.1112/blms/13.5.412. Google Scholar

[2]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451. Google Scholar

[3]

Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571. doi: 10.1081/AGB-120022810. Google Scholar

[4]

Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577. Google Scholar

[5]

A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974). Google Scholar

[6]

J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378. doi: 10.1112/S0024609303002820. Google Scholar

[7]

W. Fulton, "Intersection Theory,", Second edition, 2 (1998). doi: 10.1007/978-1-4612-1700-8. Google Scholar

[8]

Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341. Google Scholar

[9]

J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487. doi: 10.1007/s10884-009-9141-x. Google Scholar

[10]

I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974). Google Scholar

[11]

M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459. doi: 10.2307/2152805. Google Scholar

[12]

A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257. Google Scholar

[13]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545. Google Scholar

[14]

J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177. doi: 10.1112/blms/11.2.177. Google Scholar

show all references

References:
[1]

B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412. doi: 10.1112/blms/13.5.412. Google Scholar

[2]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451. Google Scholar

[3]

Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571. doi: 10.1081/AGB-120022810. Google Scholar

[4]

Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577. Google Scholar

[5]

A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974). Google Scholar

[6]

J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378. doi: 10.1112/S0024609303002820. Google Scholar

[7]

W. Fulton, "Intersection Theory,", Second edition, 2 (1998). doi: 10.1007/978-1-4612-1700-8. Google Scholar

[8]

Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341. Google Scholar

[9]

J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487. doi: 10.1007/s10884-009-9141-x. Google Scholar

[10]

I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974). Google Scholar

[11]

M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459. doi: 10.2307/2152805. Google Scholar

[12]

A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257. Google Scholar

[13]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545. Google Scholar

[14]

J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177. doi: 10.1112/blms/11.2.177. Google Scholar

[1]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[2]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[3]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[4]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[5]

Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761

[6]

Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343

[7]

Jacek Banasiak, Aleksandra Puchalska. Generalized network transport and Euler-Hille formula. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1873-1893. doi: 10.3934/dcdsb.2018185

[8]

José Natário. An elementary derivation of the Montgomery phase formula for the Euler top. Journal of Geometric Mechanics, 2010, 2 (1) : 113-118. doi: 10.3934/jgm.2010.2.113

[9]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[10]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[11]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[12]

Francisco Crespo, Sebastián Ferrer. On the extended Euler system and the Jacobi and Weierstrass elliptic functions. Journal of Geometric Mechanics, 2015, 7 (2) : 151-168. doi: 10.3934/jgm.2015.7.151

[13]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[14]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[15]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[16]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[17]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[18]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[19]

Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038

[20]

Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]